Loading [MathJax]/jax/output/CommonHTML/jax.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >RCS-YOLO | 比YOLOv7精度提高了2.6%,推理速度提高了60%

RCS-YOLO | 比YOLOv7精度提高了2.6%,推理速度提高了60%

作者头像
集智书童公众号
发布于 2023-09-04 03:32:28
发布于 2023-09-04 03:32:28
1.6K0
举报
文章被收录于专栏:集智书童集智书童

本文首发于 【集智书童】,白名单账号转载请自觉植入本公众号名片并注明来源,非白名单账号请先申请权限,违者必究。

作者提出了一种新颖的YOLO架构,名为Reparameterized Convolution based on channel Shuffle (RCS-YOLO)。作者引入了RCS和一种One-Shot Aggregation of RCS (RCS-OSA)技术,将特征级联和计算效率相结合,以提取更丰富的信息并减少时间消耗。 在大脑肿瘤数据集Br35H上的实验结果显示,所提出的模型在速度和准确性上均优于YOLOv6、YOLOv7和YOLOv8。 值得注意的是,与YOLOv7相比,RCS-YOLO的精度提高了2.6%,推理速度提高了60%,达到每秒114.8张图像检测。作者提出的RCS-YOLO在大脑肿瘤检测任务上实现了最先进的性能。 代码:https://github.com/mkang315/RCS-YOLO

1、简介

自动检测磁共振成像(MRI)中的脑肿瘤是复杂、繁琐和耗时的,因为在脑肿瘤图像中存在许多被错过、误解和误导性的类似肿瘤的病变。目前大部分工作集中在从MRI中进行脑肿瘤分类和分割,而检测任务却很少被探索。尽管现有研究表明各种卷积神经网络(CNN)对脑肿瘤检测是有效的,但使用YOLO网络的性能却鲜有研究。

随着CNN的快速发展,不同视觉任务的准确性不断提高。然而,基于CNN的模型中越来越复杂的网络架构,如ResNet、DenseNet、Inception等,使推理速度变慢。尽管许多先进的CNN提供了更高的准确性,但复杂的多支设计(如ResNet中的残差相加和Inception中的分支连接)使得模型难以实现和定制,从而降低了推理速度并减少了内存利用率。MobileNets中使用的深度可分离卷积也降低了GPU推理速度的上限。此外,某些现代计算库对3x3正则卷积进行了高度优化。因此,VGG在研究和工业界的实际应用中仍然广泛使用。

RepVGG是对VGG的扩展,通过重参化来加快推理时间。在训练阶段,RepVGG使用多支拓扑结构的架构,然后在推理阶段重参化为简化的单支结构。在网络训练的优化策略方面,YOLOv6、YOLOv7和YOLOv6 v3.0中引入了重参化。YOLOv6和YOLOv6 v3.0使用了来自RepVGG的重参化。在YOLOv6、YOLOv6 v3.0和YOLOv7中,通过RepConv将RepVGG转换为没有Indentity连接的RepVGG,而在YOLOv7中被称为RepConvN。由于RepConv中去除了Indentity连接,可以为不同特征映射提供更多的梯度多样性,直接访问ResNet或在DenseNet中进行连接。

分组卷积,使用多个核在每层进行卷积的分组,如RepVGG一样,也可以显著减少模型的计算复杂性,但组之间没有信息交流,这限制了卷积操作的特征提取能力。为了克服分组卷积的缺点,ShuffleNet V1和V2引入了通道洗牌操作,以便在不同特征通道之间促进信息流动。

此外,将YOLOv7中的空间金字塔池化和交叉阶段部分网络加上Conv-BN-SiLU(SPPCSPC)与YOLOv5和YOLOv8 中的空间金字塔池化快速(SPPF)进行比较时,发现SPPCSPC体系结构中的更多卷积层会减缓网络的计算。然而,SPP模块通过在Neck网络中对不同卷积核大小进行最大池化来实现局部特征和全局特征的融合。

为了实现快速高准确性的医学图像目标检测,作者提出了一种新的YOLO架构,名为RCS-YOLO,利用了RepVGG/RepConv。

本工作的贡献总结如下:

  1. 作者首次开发了一个基于RepVGG/RepConv和ShuffleNet的RCS,通过在训练阶段利用重参化来提供更多的特征信息,并减少推理时间。然后,作者构建了一个RCS-OSA(One-Shot Aggregation)模块,它不仅具有低成本的内存消耗,还能提取语义信息。
  2. 作者通过将开发的RCS-OSA和RepVGG/RepConv与路径聚合相结合,设计了新的YOLO架构的Backbone和Neck,缩短了特征预测层之间的信息路径。这导致精确定位信息快速传播到Backbone和Neck的特征层次结构中。
  3. 作者将所提出的RCS-YOLO模型应用于具有挑战性的脑肿瘤检测任务。据作者所知,这是首次利用基于YOLO的模型进行快速脑肿瘤检测的工作。在公开可用的脑肿瘤检测数据集上进行评估,与其他最先进的YOLO架构相比,RCS-YOLO表现出优越的检测准确性和速度。

2、本文方法

所提出的RCS-YOLO网络的体系结构如图1所示。它在基于年轻人群的目标检测器的Backbone和Neck集成了一个新的模块RCS-OSA。

2.1、RepVGG/RepConv ShuffleNet

受ShuffleNet的启发,作者设计了一种基于通道Shuffle的结构化重参化卷积,称为RCS。图2显示了RCS的结构示意图。给定输入张量的特征维度为C×H×W,经过通道分裂运算符后,它被分为两个不同的通道维张量,尺寸均为C×H×W。对于其中一个张量,作者使用Indentity分支、1×1卷积和3×3卷积构建训练时的RCS。

在推理阶段,通过使用结构重参化,将Indentity分支、1×1卷积和3×3卷积转换为3×3 RepConv。多支拓扑结构在训练阶段可以学习丰富的特征信息,简化的单支结构在推理阶段可以节省内存消耗以实现快速推理。在其中一个张量经过多支训练后,以通道方式将其与另一个张量连接。通道Shuffle运算符也被应用于增强两个张量之间的信息融合,从而实现对输入不同通道特征之间的深度测量,而计算复杂度较低。

当没有通道Shuffle时,每个分组的输出特征仅与分组内的输入特征相关,并且来自某个分组的输出仅与该分组内的输入相关。这阻止了通道组之间的信息流动,削弱了特征提取的能力。而使用通道Shuffle后,输入和输出特征完全相关,其中一个卷积组从其他组中获取数据,实现了不同组之间更有效的特征信息交流。通道Shuffle操作在堆叠的分组卷积上进行,允许更丰富的特征表示。此外,假设分组数为

,则对于相同的输入特征,通道Shuffle的计算复杂度是通用卷积的

倍。

与常用的3×3卷积相比,在推理阶段,RCS使用通道分裂和通道Shuffle等运算符将计算复杂度降低了一半,同时保持了通道间的信息交换。此外,使用结构重参化使得在训练阶段可以进行深度表示学习,从输入特征中学习更丰富的表示,并在推理阶段减少内存消耗以实现快速推理。

2.2、RCS-based One-Shot Aggregation

作者提出了一种RCS-OSA模块,通过将在第2.1节中开发的RCS结合到OSA中,如图3所示。RCS模块被重复堆叠,以确保特征的复用,并增强相邻层特征之间不同通道之间的信息流动。在网络的不同位置,作者设置不同数量的堆叠模块。

为了减少网络碎片化的程度,在One-Shot Aggregation路径上仅保留了3个特征级联,这可以减轻网络计算负担并降低内存占用。在多尺度特征融合方面,受到PANet的启发,RCS-OSA + 上采样和RCS-OSA + RepVGG / RepConv 下采样进行不同大小特征图的对齐,以允许两个预测特征层之间的信息交换。这使得目标检测可以实现高精度的快速推理。

此外,RCS-OSA保持相同数量的输入通道和最小输出通道,从而降低了内存访问成本(MAC)。在网络构建方面,作者将最大池化下采样32次的YOLOv7作为Backbone,并采用RepVGG / RepConv,Stride为2进行下采样。由于RCS-OSA模块具有多样化的特征表示和低成本的内存消耗,因此作者在RCS-OSA模块中使用不同数量的堆叠RCS,以在Backbone和Neck的不同阶段实现语义信息提取。

计算效率(或时间复杂度)的常见评估指标是浮点运算次数(FLOPs)。FLOPs只是衡量推理速度的间接指标。然而,具有DenseNet Backbone的目标检测器显示出较慢的速度和较低的能量效率,因为通过密集连接线性增加的通道数导致了较重的MAC,这导致了相当大的计算开销。给定尺寸为M×M的输入特征,大小为K×K的卷积核,输入通道数

和输出通道数

,可以计算出FLOPs和MAC。

假设n为4,作者提出的RCS-OSA和Efficient Layer Aggregation Networks (ELAN) 的FLOPs分别为

。与ELAN相比,RCS-OSA的FLOPs减少了近50%。RCS-OSA的MAC(即

)也比ELAN的MAC(即

)要少。

2.3、Detection Head

为进一步减少推理时间,作者将由RepVGG和IDetect组成的检测头数量从3减少到2。YOLOv5、YOLOv6、YOLOv7和YOLOv8都有3个检测头。

然而,作者只使用两个特征层进行预测,将原来的9个不同尺度的anchors减少为4个,并使用K-means无监督聚类方法重新生成具有不同尺度的anchors。相应的尺度为(87,90),(127,139),(154,171),(191,240)。这不仅减少了RCS-YOLO的卷积层数和计算复杂性,还减少了推理阶段网络的整体计算要求和后处理NMS的计算时间。

3、实验

3.1、SOTA对比

为了展示所提出的模型在检测脑肿瘤医学图像数据集方面的准确性和快速性,表1展示了作者提出的检测器与其他最先进的目标检测器之间的性能比较。FPS的时间包括数据预处理、前向模型推理和后处理。输入图像的长边设置为640像素。短边自适应缩放而不失真,同时保持填充的灰度是短边的32倍像素。

可以看到,RCS-YOLO在结合RCS-OSA模块的优势下表现出色。与YOLOv7相比,本文的目标检测器的FLOPs减少了8.8G,推理速度提高了43 FPS。在检测率方面,精确度提高了0.04;

提高了0.002;

提高了0.004。

此外,RCS-YOLO比YOLOv6-L v3.0和YOLOv8l更快且更准确。尽管RCS-YOLO的

与YOLOv8l相等,但这并不掩盖RCS-YOLO的根本优势。结果清楚地显示了作者的方法相对于脑肿瘤检测的最先进方法的优越性能和高效性。

3.2、消融实验

作者在基于YOLO的目标检测器中展示了所提出的RCS-OSA模块的有效性。表2中RepVGG-CSP的结果,其中RCS-YOLO中的RCS-OSA被替换为现有的YOLOv4-CSP架构中使用的CSPNet),除了GFLOPs外,都低于RCS-YOLO。由于RepVGG-CSP的参数(22.2M)不到RCS-YOLO(45.7M)的一半,因此RepVGG-CSP的计算量(即GFLOPs)也相应较小。然而,RCS-YOLO在实际推理速度(以FPS为单位)上仍然表现更好。

4、参考

[1].RCS-YOLO: A Fast and High-Accuracy Object Detector for Brain Tumor Detection. [2].https://github.com/mkang315/RCS-YOLO.

5、推荐阅读

Hybrid-SORT起飞 | 超过DeepSORT将近10个点的多目标跟踪香不香?

模型部署系列 | 卷积Backbone量化技巧集锦

YOLO落地部署 | 一文全览YOLOv5最新的剪枝、量化的进展【必读】

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-08-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 集智书童 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
YOLO系列算法全家桶——YOLOv1-YOLOv9详细介绍 !!
YOLO系列的核心思想就是把目标检测转变为一个回归问题,利用整张图片作为网络的输入,通过神经网络,得到边界框的位置及其所属的类别。
JOYCE_Leo16
2024/04/09
32.4K1
YOLO系列算法全家桶——YOLOv1-YOLOv9详细介绍 !!
炸裂 !轻量化YOLO | ShuffleNetv2与Transformer结合,重塑YOLOv7成就超轻超快YOLO
随着计算机视觉领域的迅速发展,目标检测在各种应用中变得至关重要,这些应用范围包括但不限于安全监控、自动驾驶和智慧医疗。尽管传统目标检测方法存在计算复杂度高和实时性能不足的问题,但基于深度学习算法已在准确性和实时性能方面取得了重大突破。其中,YOLO已成为一种经典的实时目标检测算法,它在计算速度和检测精度之间取得了平衡。然而,移动设备通常在计算能力、内存容量和能源消耗方面受限,这复杂化了深度学习模型的部署。
集智书童公众号
2024/03/11
3.1K0
炸裂 !轻量化YOLO | ShuffleNetv2与Transformer结合,重塑YOLOv7成就超轻超快YOLO
干货 | YOLOv7目标检测论文解读与推理演示
本文主要介绍简化的YOLOv7论文解读和推理测试以及YOLOv7与 YOLO系列的其他目标检测器的比较。(公众号:OpenCV与AI深度学习)
Color Space
2022/09/26
5.6K0
YOLOv4团队开源最新力作!1774fps、COCO最高精度,分别适合高低端GPU的YOLO
本文是YOLOv4的原班人马(包含CSPNet一作与YOLOv4一作AB大神)在YOLO系列的继续扩展,从影响模型扩展的几个不同因素出发,提出了两种分别适合于低端GPU和高端GPU的YOLO。该文所提出的YOLO-large在MSCOCO取得前所未有的精度(已公开的研究成果中最佳),且可以保持实时推理;所提出的YOLO-tiny在RTX 2080Ti显卡上结合TensorRT+FP16等技术,可以达到惊人的1774FPS@batch=4.
深度学习技术前沿公众号博主
2020/12/01
1.4K0
YOLOv4团队开源最新力作!1774fps、COCO最高精度,分别适合高低端GPU的YOLO
Yolov7:最新最快的实时检测框架,最详细分析解释(附源代码)
关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 论文地址:https://arxiv.org/pdf/2207.02696.pdf 代码地址:https://github.com/WongKinYiu/yolov7 计算机视觉研究院专栏 作者:Edison_G YOLOv7相同体量下比YOLOv5精度更高,速度快120%(FPS),比YOLOX快180%(FPS),比Dual-Swin-T快1200%(FPS),比ConvN
计算机视觉研究院
2022/07/12
1.9K0
Yolov7:最新最快的实时检测框架,最详细分析解释(附源代码)
RepVGG-GELAN | 融合 VGG、ShuffleNet 与 YOLO 图像检测的准确性及效率再上一层!
鉴于高发病率和死亡率,脑肿瘤是全球健康关注的重点问题。通过利用深度学习算法等最先进技术,自动化检测技术可以有效解决脑肿瘤识别的挑战。将自动化检测融入医疗流程,有望通过革新脑肿瘤的管理方式显著提高患者疗效和医疗服务,尤其是随着技术的发展。最先进的目标检测方法YOLO在估算每个网格单元的类别概率和边界框时,将输入图像划分为网格。
集智书童公众号
2024/05/17
8200
RepVGG-GELAN | 融合 VGG、ShuffleNet 与 YOLO 图像检测的准确性及效率再上一层!
南开大学提出YOLO-MS | 超越YOLOv8与RTMDet,即插即用打破性能瓶颈
本文首发于 【集智书童】,白名单账号转载请自觉植入本公众号名片并注明来源,非白名单账号请先申请权限,违者必究。
集智书童公众号
2023/09/04
1.7K0
南开大学提出YOLO-MS | 超越YOLOv8与RTMDet,即插即用打破性能瓶颈
YOLO家族系列模型的演变:从v1到v8(下)
昨天的文章中,我们回顾了 YOLO 家族的前 9 个架构。本文中将继续总结最后3个框架,还有本月最新发布的YOLO V8.
deephub
2023/02/01
2.9K0
YOLO-TLA也来了 | 重新设计C3模块为Backbone引入轻量化注意力,诞生高效的小目标检测YOLO模型
近年来深度学习的快速发展导致了计算机视觉各个方面的重要突破,尤其是在目标检测领域。这个计算机视觉的关键方面旨在识别和分类图像中的目标(例如,行人、动物、车辆),这对于目标追踪和目标分割等任务是一个基础性的要素。其在工业应用中非常广泛,范围从缺陷检测到自动驾驶。
集智书童公众号
2024/03/01
1.9K0
YOLO-TLA也来了 | 重新设计C3模块为Backbone引入轻量化注意力,诞生高效的小目标检测YOLO模型
长文详解YOLOv7的网络结构
作者:Kissrabbit (知乎同名) 方向:目标检测与人体动作行为分析 哈尔滨工业大学在读博士 最近,Scaled-YOLOv4的作者(也是后来的YOLOR的作者)和YOLOv4的作者AB大佬再次联手推出了YOLOv7,目前来看,这一版的YOLOv7是一个比较正统的YOLO续作,毕竟有AB大佬在,得到了过YOLO原作的认可。 网上已经有了很多文章去从各个方面来测试YOLOv7,但关于YOLOv7到底长什么样,似乎还没有多少人做出介绍。由于YOLOv7再一次平衡好了参数量、计算量和性能之间的矛盾,所以,笔
zenRRan
2022/09/14
8.5K2
长文详解YOLOv7的网络结构
属于嵌入式和移动设备的轻量级 YOLO 模型 !
凡本公众号注明“来源:XXX(非集智书童)”的作品,均转载自其它媒体,版权归原作者所有,如有侵权请联系我们删除,谢谢。
集智书童公众号
2024/07/08
8650
属于嵌入式和移动设备的轻量级 YOLO 模型 !
YOLOv4官方改进版来了!指标炸裂55.8% AP!Scaled-YOLOv4:扩展跨阶段局部网络
YOLOv4-large在COCO上最高可达55.8 AP!速度也高达15 FPS!YOLOv4-tiny的模型实现了1774 FPS!(在RTX 2080Ti上测试)
3D视觉工坊
2020/12/11
2K0
YOLOv4官方改进版来了!指标炸裂55.8% AP!Scaled-YOLOv4:扩展跨阶段局部网络
YOLOv10开源|清华用端到端YOLOv10在速度精度上都生吃YOLOv8和YOLOv9
实时目标检测一直是计算机视觉研究领域的一个重点,旨在在低延迟下准确预测图像中物体的类别和位置。它被广泛应用于各种实际应用中,包括自动驾驶,机器人导航,物体跟踪等。近年来,研究行人一直致力于设计基于CNN的目标检测器以实现实时检测。其中,YOLOs因其性能和效率之间的巧妙平衡而越来越受欢迎。YOLOs的检测流程包括两部分:模型前向过程和NMS后处理。然而,这两者仍存在不足,导致次优的准确度-延迟边界。
集智书童公众号
2024/05/28
3.8K0
YOLOv10开源|清华用端到端YOLOv10在速度精度上都生吃YOLOv8和YOLOv9
YOLO内卷时期该如何选模型?
机器之心转载 来源:知乎 作者:知乎用户@迪迦奥特曼 YOLO 新版本那么多,到底选哪个? 前不久看到了美团微信公众号上的宣传,更新发布了新版 YOLOv6,还放出了 arxiv 论文,更新了之前的 N/T/S 小模型,也放出了 M 和 L 版本的大模型,论文实验表格多达十几个,看的出来是很用心的做了,YOLO官方也认可了这个起名。 之前本人写了一个 YOLO 合集的文章(迪迦奥特曼:从百度飞桨 YOLOSeries 库看各个 YOLO 模型:https://zhuanlan.zhihu.com/p/550
机器之心
2022/10/08
9300
YOLO内卷时期该如何选模型?
YOLOv7速度精度超越其他变体,大神AB发推,网友:还得是你!|开源
点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 量子位 授权 前脚美团刚发布YOLOv6, YOLO官方团队又放出新版本。 曾参与YOLO项目维护的大神Alexey Bochkovskiy在推特上声称: 官方版YOLOv7比以下版本的精度和速度都要好。 在论文中,团队详细对比了YOLOv7和其他变体的性能对比,并介绍v7版本的新变化。 话不多说,YOLOv7有多强一起来看实验结果。 速度、精度都超越其他变体 论文中,实验以之前版本的YOLO和最先进的目标检测模型作为基准。 表格是YOLOv7模型在
OpenCV学堂
2022/07/12
1.4K0
YOLOv7速度精度超越其他变体,大神AB发推,网友:还得是你!|开源
YoloX大升级:阿里巴巴提出新框架,超越Yolov6和PPYoloE(附源代码)
关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 代码地址: https://github. com/alibaba/EasyCV 计算机视觉研究院专栏 作者:Edison_G 最新阿里巴巴研究员,基于自研平台,对YoloX检测框架进行了改进,并且效率更快,超越了Yolov6和PP-YoloE等网络。 01 概述 EasyCV是阿里巴巴开源的基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-o
计算机视觉研究院
2022/09/06
7380
YoloX大升级:阿里巴巴提出新框架,超越Yolov6和PPYoloE(附源代码)
YOLO系列的落地 | YOLOv7+注意力机制在农业上的应用
随着技术的发展,监控设备在农业中发挥着巨大的作用。有多种方法可以监测个体动物的行为,例如插入芯片记录生理数据、使用可穿戴传感器和(热)成像技术。一些方法使用附着在鸟类脚上的可穿戴传感器来测量它们的活动,但这可能会对受监测的动物产生额外影响。特别是,在商业环境中,技术限制和高成本导致这种方法的可行性低。
集智书童公众号
2023/02/26
2.8K0
YOLO系列的落地 | YOLOv7+注意力机制在农业上的应用
YOLOv7上线:无需预训练,5-160 FPS内超越所有目标检测器
机器之心报道 编辑:小舟、泽南 在 5-160 FPS 范围内速度和精度超过所有已知目标检测器。 在 YOLOv6 推出后不到两个星期,提出 YOLOv4 的团队就发布了更新一代的版本。 本周三,YOLOv7 的论文被提交到了预印版论文平台 arXiv 上,其三位作者 Chien-Yao Wang、Alexey Bochkovskiy 和 Hong-Yuan Mark Liao 是 YOLOv4 的原班人马。 论文链接:https://arxiv.org/abs/2207.02696 GitHub 链接:
机器之心
2022/07/12
10.3K0
YOLOv7上线:无需预训练,5-160 FPS内超越所有目标检测器
YOLOv7论文讲解和代码复现
YOLO v7论文(YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors)被收录于计算机视觉顶会CVPR2023,这也是时隔 6 年,YOLOv 系列再登顶会 CVPR!我们知道CVPR是计算机视觉方面的三大顶级会议之一,上一次被收录还是YOLO v2,这也可以看到YOLO v7很强大,也被很多人所认可。
Srlua
2024/11/28
2190
YOLOv7论文讲解和代码复现
YOLO落地部署 | 一文全览YOLOv5最新的剪枝、量化的进展【必读】
本文首发于 【集智书童】,白名单账号转载请自觉植入本公众号名片并注明来源,非白名单账号请先申请权限,违者必究。
集智书童公众号
2023/09/04
7.3K0
YOLO落地部署 | 一文全览YOLOv5最新的剪枝、量化的进展【必读】
推荐阅读
YOLO系列算法全家桶——YOLOv1-YOLOv9详细介绍 !!
32.4K1
炸裂 !轻量化YOLO | ShuffleNetv2与Transformer结合,重塑YOLOv7成就超轻超快YOLO
3.1K0
干货 | YOLOv7目标检测论文解读与推理演示
5.6K0
YOLOv4团队开源最新力作!1774fps、COCO最高精度,分别适合高低端GPU的YOLO
1.4K0
Yolov7:最新最快的实时检测框架,最详细分析解释(附源代码)
1.9K0
RepVGG-GELAN | 融合 VGG、ShuffleNet 与 YOLO 图像检测的准确性及效率再上一层!
8200
南开大学提出YOLO-MS | 超越YOLOv8与RTMDet,即插即用打破性能瓶颈
1.7K0
YOLO家族系列模型的演变:从v1到v8(下)
2.9K0
YOLO-TLA也来了 | 重新设计C3模块为Backbone引入轻量化注意力,诞生高效的小目标检测YOLO模型
1.9K0
长文详解YOLOv7的网络结构
8.5K2
属于嵌入式和移动设备的轻量级 YOLO 模型 !
8650
YOLOv4官方改进版来了!指标炸裂55.8% AP!Scaled-YOLOv4:扩展跨阶段局部网络
2K0
YOLOv10开源|清华用端到端YOLOv10在速度精度上都生吃YOLOv8和YOLOv9
3.8K0
YOLO内卷时期该如何选模型?
9300
YOLOv7速度精度超越其他变体,大神AB发推,网友:还得是你!|开源
1.4K0
YoloX大升级:阿里巴巴提出新框架,超越Yolov6和PPYoloE(附源代码)
7380
YOLO系列的落地 | YOLOv7+注意力机制在农业上的应用
2.8K0
YOLOv7上线:无需预训练,5-160 FPS内超越所有目标检测器
10.3K0
YOLOv7论文讲解和代码复现
2190
YOLO落地部署 | 一文全览YOLOv5最新的剪枝、量化的进展【必读】
7.3K0
相关推荐
YOLO系列算法全家桶——YOLOv1-YOLOv9详细介绍 !!
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档