哑变量又叫做虚拟变量,虚设变量或者名义变量,是人为设定的用于将分类变量引入回归模型中的方法。比如学历、职业、性别等分类变量的数据是不能量化的,通过构造0和1的哑变量可以考察定性因素(分类变量)对因变量的影响。
哑变量一般在回归的相关模型中经常使用。在虚拟变量的设置中:表示的基础类型、肯定类型取值为1;如果是比较类型,否定类型则取值为0。
在实际的数据处理中,通过独热码one-hot来实现哑变量。Pandas中的get_dummies函数能够实现此功能。
pandas.get_dummies(data, # 待处理数据
prefix=None, #
prefix_sep='_', # 连接符
dummy_na=False, # 是否显示控制
columns=None, # 指定字段
sparse=False, # 是否表示为稀疏矩阵
drop_first=False, # 是否删除生成后的第一个字段
dtype=None)import pandas as pd
import numpy as np
from sklearn.preprocessing import OneHotEncoders = pd.Series(list("abadc"))
s0 a
1 b
2 a
3 d
4 c
dtype: objectpd.get_dummies(s).dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
a | b | c | d | |
|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
2 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 1 | 0 |
pd.get_dummies(s).dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
a | b | c | d | |
|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
2 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 1 | 0 |
pd.get_dummies(s, prefix="col") # 统一加上前缀col,默认连接符是_.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
col_a | col_b | col_c | col_d | |
|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
2 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 1 | 0 |
pd.get_dummies(s, prefix="col", prefix_sep=".") # 统一加上前缀col,连接符是..dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
col.a | col.b | col.c | col.d | |
|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
2 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 1 | 0 |
s1 = pd.Series(["a","b",np.nan,"c"])
s10 a
1 b
2 NaN
3 c
dtype: objectpd.get_dummies(s1, dummy_na=False) # 默认是False.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
a | b | c | |
|---|---|---|---|
0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 |
2 | 0 | 0 | 0 |
3 | 0 | 0 | 1 |
pd.get_dummies(s1, dummy_na=True) # 显示空值.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
a | b | c | NaN | |
|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
2 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 1 | 0 |
pd.get_dummies(s1).dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
a | b | c | |
|---|---|---|---|
0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 |
2 | 0 | 0 | 0 |
3 | 0 | 0 | 1 |
pd.get_dummies(s1, drop_first=True).dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
b | c | |
|---|---|---|
0 | 0 | 0 |
1 | 1 | 0 |
2 | 0 | 0 |
3 | 0 | 1 |
pd.get_dummies(s1, dtype="float").dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
a | b | c | |
|---|---|---|---|
0 | 1.0 | 0.0 | 0.0 |
1 | 0.0 | 1.0 | 0.0 |
2 | 0.0 | 0.0 | 0.0 |
3 | 0.0 | 0.0 | 1.0 |
df = pd.DataFrame({
"id":["ID1","ID2","ID3","ID4","ID5","ID6"],
"sex":["Female","Male","Female","Male","Male","Female"],
"amount":[2000,2500,1800,1900,2000,2600]
})
df.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
id | sex | amount | |
|---|---|---|---|
0 | ID1 | Female | 2000 |
1 | ID2 | Male | 2500 |
2 | ID3 | Female | 1800 |
3 | ID4 | Male | 1900 |
4 | ID5 | Male | 2000 |
5 | ID6 | Female | 2600 |
pd.get_dummies(df["sex"]).dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
Female | Male | |
|---|---|---|
0 | 1 | 0 |
1 | 0 | 1 |
2 | 1 | 0 |
3 | 0 | 1 |
4 | 0 | 1 |
5 | 1 | 0 |
结果:从sex变量延伸出两个变量Female和Male,这两个变量就是sex中的不同取值。
当原数据中出现了Female,则哑变量Female取值为1,否则为0;Male是一样的
pd.get_dummies(df["sex"], prefix="sex").dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
sex_Female | sex_Male | |
|---|---|---|
0 | 1 | 0 |
1 | 0 | 1 |
2 | 1 | 0 |
3 | 0 | 1 |
4 | 0 | 1 |
5 | 1 | 0 |
# 指定对sex执行独热码
pd.get_dummies(df, columns=["sex"]).dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
id | amount | sex_Female | sex_Male | |
|---|---|---|---|---|
0 | ID1 | 2000 | 1 | 0 |
1 | ID2 | 2500 | 0 | 1 |
2 | ID3 | 1800 | 1 | 0 |
3 | ID4 | 1900 | 0 | 1 |
4 | ID5 | 2000 | 0 | 1 |
5 | ID6 | 2600 | 1 | 0 |
df1 = pd.DataFrame({
"id":["ID1","ID2","ID3","ID4","ID5","ID6"],
"sex":["Female","Male","Female","Male","Male","Female"],
"education":["高中","本科","本科","研究生","本科","研究生"],
"amount":[1000,2500,1800,4900,2000,3600]
})
df1.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
id | sex | education | amount | |
|---|---|---|---|---|
0 | ID1 | Female | 高中 | 1000 |
1 | ID2 | Male | 本科 | 2500 |
2 | ID3 | Female | 本科 | 1800 |
3 | ID4 | Male | 研究生 | 4900 |
4 | ID5 | Male | 本科 | 2000 |
5 | ID6 | Female | 研究生 | 3600 |
pd.get_dummies(df1["education"]).dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
本科 | 研究生 | 高中 | |
|---|---|---|---|
0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 |
2 | 1 | 0 | 0 |
3 | 0 | 1 | 0 |
4 | 1 | 0 | 0 |
5 | 0 | 1 | 0 |
pd.get_dummies(df1, columns=["education"]).dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
id | sex | amount | education_本科 | education_研究生 | education_高中 | |
|---|---|---|---|---|---|---|
0 | ID1 | Female | 1000 | 0 | 0 | 1 |
1 | ID2 | Male | 2500 | 1 | 0 | 0 |
2 | ID3 | Female | 1800 | 1 | 0 | 0 |
3 | ID4 | Male | 4900 | 0 | 1 | 0 |
4 | ID5 | Male | 2000 | 1 | 0 | 0 |
5 | ID6 | Female | 3600 | 0 | 1 | 0 |
df1.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
id | sex | education | amount | |
|---|---|---|---|---|
0 | ID1 | Female | 高中 | 1000 |
1 | ID2 | Male | 本科 | 2500 |
2 | ID3 | Female | 本科 | 1800 |
3 | ID4 | Male | 研究生 | 4900 |
4 | ID5 | Male | 本科 | 2000 |
5 | ID6 | Female | 研究生 | 3600 |
pd.get_dummies(df1, columns=["sex","education"]).dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
id | amount | sex_Female | sex_Male | education_本科 | education_研究生 | education_高中 | |
|---|---|---|---|---|---|---|---|
0 | ID1 | 1000 | 1 | 0 | 0 | 0 | 1 |
1 | ID2 | 2500 | 0 | 1 | 1 | 0 | 0 |
2 | ID3 | 1800 | 1 | 0 | 1 | 0 | 0 |
3 | ID4 | 4900 | 0 | 1 | 0 | 1 | 0 |
4 | ID5 | 2000 | 0 | 1 | 1 | 0 | 0 |
5 | ID6 | 3600 | 1 | 0 | 0 | 1 | 0 |
enc = OneHotEncoder()
enc.fit([[0,0,3],
[1,1,0],
[0,2,1],
[1,0,2]]) #这里一共有4个数据,3种特征
array = enc.transform([[0,1,3]]).toarray()
print(array)[[1. 0. 0. 1. 0. 0. 0. 0. 1.]]array = enc.transform([[1,2,1]]).toarray()
print(array)[[0. 1. 0. 0. 1. 0. 1. 0. 0.]]df1.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
id | sex | education | amount | |
|---|---|---|---|---|
0 | ID1 | Female | 高中 | 1000 |
1 | ID2 | Male | 本科 | 2500 |
2 | ID3 | Female | 本科 | 1800 |
3 | ID4 | Male | 研究生 | 4900 |
4 | ID5 | Male | 本科 | 2000 |
5 | ID6 | Female | 研究生 | 3600 |
enc = OneHotEncoder()
enc.fit(df1[["sex", "education"]])OneHotEncoder()enc.categories_[array(['Female', 'Male'], dtype=object),
array(['本科', '研究生', '高中'], dtype=object)]# 测试案例
enc.transform([["Male","研究生"]]).toarray()/Applications/downloads/anaconda/anaconda3/lib/python3.7/site-packages/sklearn/base.py:451: UserWarning: X does not have valid feature names, but OneHotEncoder was fitted with feature names
"X does not have valid feature names, but"
array([[0., 1., 0., 1., 0.]])