前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Shikra:理解指向,说出坐标,多模态语言模型超进化

Shikra:理解指向,说出坐标,多模态语言模型超进化

作者头像
AI科技大本营
发布2023-08-08 09:37:01
3170
发布2023-08-08 09:37:01
举报
文章被收录于专栏:AI科技大本营的专栏

论文:http://arxiv.org/abs/2306.15195

代码:https://github.com/shikras/shikra

背景

在人类的日常交流中,经常会关注场景中的不同区域或物体,人们可以通过说话并指向这些区域来进行高效的信息交换。我们将这种交互模式称为参考对话(Referential Dialogue)

如果 MLLM 擅长这项技能,它将带来许多令人兴奋的应用。例如,将其应用到 Apple Vision Pro 等混合现实 (XR) 眼镜中,用户可以使用视线注视指示任何内容与AI对话。同时AI也可以通过高亮等形式来指向某些区域,实现与用户的高效交流。

本工作提出了Shikra模型,赋予了MLLM这样的参考对话能力,既可以理解位置输入,也可以产生位置输出。

核心亮点

1. Shikra能够理解用户输入的point/bounding box,并支持point/bounding box的输出,可以和人类无缝地进行参考对话。

2. Shikra设计简单直接,采用非拼接式设计,不需要额外的位置编码器、前/后目标检测器或外部插件模块,甚至不需要额外的词汇表。

如上图所示,Shikra能够精确理解用户输入的定位区域,并能在输出中引用与输入时不同的区域进行交流。像人类一样通过对话和定位进行高效交流。

如上图所示,Shikra不仅具备LLM所有的基本常识,还能够基于位置信息做出推理

如上图所示,Shikra可以产生详细的描述,解释图片中正在发生的事情,并为参考的物体生成准确的定位。

尽管没有在OCR数据集上专门训练,Shikra也具有基本的OCR能力。

更多的例子

其他传统任务

方法

模型架构采用CLIP ViT-L/14 作为视觉主干,Vicuna-7/13B作为基语言模型,使用一层线性映射连接CLIP和Vicuna的特征空间。

Shikra直接使用自然语言中的数字来表示物体位置,使用[xmin, ymin, xmax, ymax] 表示边界框,使用[xcenter, ycenter]表示区域中心点,区域的 xy 坐标根据图像大小进行归一化。每个数字默认保留 3 位小数。这些坐标可以出现在模型的输入和输出序列中的任何位置。记录坐标的方括号也自然地出现在句子中。

实验结果

Shikra在传统REC、VQA、Caption任务上都能取得优良表现。同时在PointQA-Twice、Point-V7W等需要理解位置输入的VQA任务上取得了SOTA结果。

我们使用POPE benchmark评估了Shikra产生幻觉的程度,Shikra得到和InstrcutBLIP相当的结果,并远超近期其他MLLM。

思想链(CoT),旨在通过在最终答案前添加推理过程以帮助LLM回答复杂的QA问题。这一技术已被广泛应用到自然语言处理的各种任务中。然而如何在多模态场景下应用CoT则尚待研究。尤其因为目前的MLLM还存在严重的幻视问题,CoT经常会产生幻觉,影响最终答案的正确性。通过在合成数据集CLEVR上的实验,我们发现,使用带有位置信息的CoT时,可以有效减少模型幻觉提高模型性能

结论

本工作介绍了一种名为Shikra的简单且统一的模型,以自然语言的方式理解与输出空间坐标,为MLLM增加了类似于人类的参考对话能力,无需引入额外的词汇表、位置编码器或外部插件。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-06-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI科技大本营 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档