前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >速度提升数十倍,只需一张图一句话,谷歌新模型20秒即可实现变脸

速度提升数十倍,只需一张图一句话,谷歌新模型20秒即可实现变脸

作者头像
机器之心
发布2023-08-08 08:59:46
2440
发布2023-08-08 08:59:46
举报
文章被收录于专栏:机器之心

机器之心报道

编辑:陈萍、小舟

时隔 8 个月,谷歌又提出了一种能在 20 秒内实现人脸个性化处理的新生成模型。

此前,谷歌和波士顿大学的研究者提出了一种「个性化(Personalization)」的文本到图像扩散模型 DreamBooth,用户只需提供 3~5 个样本 + 一句话,AI 就能定制照片级图像。

对于「个性化」我们可以这样理解,以输入图像为参考,生成的图像在各种情境和不同风格中都能保持对其身份的高度忠实。

举例来讲,输入左侧 4 张小狗的照片,DreamBooth 就可以生成不同类型的小狗,如小狗在景点里旅游、在海里游泳、趴在窝棚里睡觉、甚至人类给它修剪毛发,而生成的图片都高度保持了原图像的特点。

然而,个性化过程在时间和内存需求方面还存在很多挑战。具体到单个个性化模型,进行微调需要大量的 GPU 时间投入,不仅如此,个性化模型还需要很高的存储容量。

为了克服这些挑战,时隔 8 个月,谷歌又提出了一种新的生成模型 HyperDreamBooth。HyperDreamBooth 可以生成不同上下文和风格的人脸,同时还能保留脸部关键知识。

在只使用一张参考图像的情况下,HyperDreamBooth 在大约 20 秒内实现了对人脸的个性化处理,比 DreamBooth 快 25 倍,比 Textual Inversion 快 125 倍,不仅如此,生成的图像与 DreamBooth 质量一样、风格还多样性。此外,HyperDreamBooth 还比常规的 DreamBooth 模型小 10000 倍。

论文地址:https://arxiv.org/pdf/2307.06949.pdf

论文主页:https://hyperdreambooth.github.io/

在我们深入探讨技术细节之前,先看一些效果。

下图中,左边一栏是输入图像,给定一张图像就可以;中间一栏是根据不同的提示生成的人脸,提示语分别是 Instagram 上一张 V 型脸的自拍照;皮克斯卡通人物的 V 型脸;摇滚明星 V 型脸;树皮一样的 V 型脸。最右边生成的是人物专业照片 V 型脸。结果显示,HyperDreamBooth 具有相当大的可编辑性,同时还能保持人物关键面部特征的完整性。

HyperDreamBooth 与 Textual Inversion 、DreamBooth 方法比较有何优势呢?

下图展示了两个示例、5 种风格,结果显示,HyperDreamBooth 可以很好的保持输入图像特性,还具有很强的可编辑性。

接下来我们看看 HyperDreamBooth 具体是如何实现的。

方法介绍

该研究提出的方法由 3 个核心部分组成,分别是轻量级 DreamBooth(Lightweight DreamBooth,LiDB)、预测 LiDB 权重的 HyperNetwork 和 rank-relaxed 快速微调。

LiDB 的核心思想是进一步分解 rank-1 LoRa 残差的权重空间。具体来说,该研究使用 rank-1 LoRA 权重空间内的随机正交不完全基(random orthogonal incomplete basis)来实现这一点,如下图所示:

HyperDreamBooth 的训练和快速微调如下图 2 所示,分为两个阶段。

第 1 阶段:训练 HyperNetwork 以根据人脸图像预测网络权重。该研究使用预先计算的个性化权重进行监督,使用 L2 损失和 vanilla 扩散重建损失函数。第 2 阶段:给定面部图像,用 HyperNetwork 预测网络权重的初步猜测(initial guess),然后使用重建损失进行微调以增强保真度。

HyperNetwork 架构

该研究使用的 HyperNetwork 架构如下图 4 所示。其中,视觉 Transformer(ViT)编码器将人脸图像转换成潜在的人脸特征,然后将其连接到潜在层权重特征(初始化为 0)。Transformer 解码器接收连接特征的序列,并通过使用 delta 预测细化初始权重来迭代地预测权重特征的值。

值得一提的是,这是 transformer 解码器首次被用于 HyperNetwork。

如下图所示,HyperNetwork + 快速微调取得了良好的效果:

实验

下表为 HyperDreamBooth 与 DreamBooth、 Textual Inversion 比较结果。表明,在所有指标上,HyperDreamBooth 得分最高。

下表为不同迭代次数下的比较结果,比较模型包括 HyperDreamBooth、DreamBooth、400 次迭代的 DreamBooth-Agg-1 和 40 次迭代的 DreamBooth-Agg-2。结果显示,HyperDreamBooth 在三项指标上都超过其他模型。

下表为消融实验结果:主要对比的是 HyperNetwork 对性能的影响。

用户研究。该研究还让用户以投票的方式参与评估,结果显示用户对 HyperNetwork 生成的结果偏好强烈。

了解更多内容,请参考原论文。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-07-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
GPU 云服务器
GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档