🏠个人主页:shark-Gao
🧑个人简介:大家好,我是 shark-Gao,一个想要与大家共同进步的男人😉😉
🎉目前状况:23 届毕业生,目前在某公司实习👏👏
❤️欢迎大家:这里是 CSDN,我总结知识的地方,欢迎来到我的博客,我亲爱的大佬😘
都有哪些维度可以进行数据库调优?简言之:
关于数据库调优的知识非常分散。不同的 DBMS,不同的公司,不同的职位,不同的项目遇到的问题都不尽相同。这里我们分为三个章节进行细致讲解。
虽然 SQL 查询优化的技术有很多,但是大方向上完全可以分成 物理查询优化
和 逻辑查询优化
两大块。
索引
和 表连接方式
等技术来进行优化,这里重点需要掌握索引的使用。等价变换
提升查询效率,直白一点就是说,换一种查询写法效率可能更高。学员表
插 50万
条, 班级表
插 1万
条。
CREATE DATABASE atguigudb2;
USE atguigudb2;
步骤 1:建表
CREATE TABLE `class` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`className` VARCHAR(30) DEFAULT NULL,
`address` VARCHAR(40) DEFAULT NULL,
`monitor` INT NULL ,
PRIMARY KEY (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
CREATE TABLE `student` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`stuno` INT NOT NULL ,
`name` VARCHAR(20) DEFAULT NULL,
`age` INT(3) DEFAULT NULL,
`classId` INT(11) DEFAULT NULL,
PRIMARY KEY (`id`)
#CONSTRAINT `fk_class_id` FOREIGN KEY (`classId`) REFERENCES `t_class` (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
步骤 2:设置参数
set global log_bin_trust_function_creators=1; # 不加global只是当前窗口有效。
步骤 3:创建函数
保证每条数据都不同。
#随机产生字符串
DELIMITER //
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN
DECLARE chars_str VARCHAR(100) DEFAULT
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
DECLARE return_str VARCHAR(255) DEFAULT '';
DECLARE i INT DEFAULT 0;
WHILE i < n DO
SET return_str =CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
SET i = i + 1;
END WHILE;
RETURN return_str;
END //
DELIMITER ;
#假如要删除
#drop function rand_string;
随机产生班级编号
#用于随机产生多少到多少的编号
DELIMITER //
CREATE FUNCTION rand_num (from_num INT ,to_num INT) RETURNS INT(11)
BEGIN
DECLARE i INT DEFAULT 0;
SET i = FLOOR(from_num +RAND()*(to_num - from_num+1)) ;
RETURN i;
END //
DELIMITER ;
#假如要删除
#drop function rand_num;
步骤 4:创建存储过程
#创建往stu表中插入数据的存储过程
DELIMITER //
CREATE PROCEDURE insert_stu( START INT , max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
SET autocommit = 0; #设置手动提交事务
REPEAT #循环
SET i = i + 1; #赋值
INSERT INTO student (stuno, name ,age ,classId ) VALUES
((START+i),rand_string(6),rand_num(1,50),rand_num(1,1000));
UNTIL i = max_num
END REPEAT;
COMMIT; #提交事务
END //
DELIMITER ;
#假如要删除
#drop PROCEDURE insert_stu;
创建往 class 表中插入数据的存储过程
#执行存储过程,往class表添加随机数据
DELIMITER //
CREATE PROCEDURE `insert_class`( max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
SET autocommit = 0;
REPEAT
SET i = i + 1;
INSERT INTO class ( classname,address,monitor ) VALUES
(rand_string(8),rand_string(10),rand_num(1,100000));
UNTIL i = max_num
END REPEAT;
COMMIT;
END //
DELIMITER ;
#假如要删除
#drop PROCEDURE insert_class;
步骤 5:调用存储过程
class
#执行存储过程,往class表添加1万条数据
CALL insert_class(10000);
stu
#执行存储过程,往stu表添加50万条数据
CALL insert_stu(100000,500000);
步骤 6:删除某表上的索引
创建存储过程
DELIMITER //
CREATE PROCEDURE `proc_drop_index`(dbname VARCHAR(200),tablename VARCHAR(200))
BEGIN
DECLARE done INT DEFAULT 0;
DECLARE ct INT DEFAULT 0;
DECLARE _index VARCHAR(200) DEFAULT '';
DECLARE _cur CURSOR FOR SELECT index_name FROM
information_schema.STATISTICS WHERE table_schema=dbname AND table_name=tablename AND
seq_in_index=1 AND index_name <>'PRIMARY' ;
#每个游标必须使用不同的declare continue handler for not found set done=1来控制游标的结束
DECLARE CONTINUE HANDLER FOR NOT FOUND set done=2 ;
#若没有数据返回,程序继续,并将变量done设为2
OPEN _cur;
FETCH _cur INTO _index;
WHILE _index<>'' DO
SET @str = CONCAT("drop index " , _index , " on " , tablename );
PREPARE sql_str FROM @str ;
EXECUTE sql_str;
DEALLOCATE PREPARE sql_str;
SET _index='';
FETCH _cur INTO _index;
END WHILE;
CLOSE _cur;
END //
DELIMITER ;
执行存储过程
CALL proc_drop_index("dbname","tablename");
系统中经常出现的 sql 语句如下:
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND name = 'abcd';
建立索引前执行:(关注执行时间)
mysql> SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND name = 'abcd';
Empty set, 1 warning (0.28 sec)
建立索引
CREATE INDEX idx_age ON student(age);
CREATE INDEX idx_age_classid ON student(age,classId);
CREATE INDEX idx_age_classid_name ON student(age,classId,name);
建立索引后执行:
mysql> SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND name = 'abcd';
Empty set, 1 warning (0.01 sec)
在 MySQL 建立联合索引时会遵守最佳左前缀原则,即最左优先,在检索数据时从联合索引的最左边开始匹配。
举例 1:
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abcd';
举例 2:
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=1 AND student.name = 'abcd';
举例 3:索引 idx_age_classid_name
还能否正常使用?
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=4 AND student.age=30 AND student.name = 'abcd';
如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始并且不跳过索引中的列。
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abcd';
虽然可以正常使用,但是只有部分被使用到了。
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=1 AND student.name = 'abcd';
完全没有使用上索引。
结论:MySQL 可以为多个字段创建索引,一个索引可以包含 16 个字段。对于多列索引,过滤条件要使用索引必须按照索引建立时的顺序,依次满足,一旦跳过某个字段,索引后面的字段都无法被使用。如果查询条件中没有用这些字段中第一个字段时,多列(或联合)索引不会被使用。
拓展:Alibaba《Java 开发手册》 索引文件具有 B-Tree 的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引。
如果此时再插入一条主键值为 9 的记录,那它插入的位置就如下图:
可这个数据页已经满了,再插进来咋办呢?我们需要把当前 页面分裂
成两个页面,把本页中的一些记录移动到新创建的这个页中。页面分裂和记录移位意味着什么?意味着: 性能损耗
!所以如果我们想尽量避免这样无谓的性能损耗,最好让插入的记录的 主键值依次递增
,这样就不会发生这样的性能损耗了。 所以我们建议:让主键具有 AUTO_INCREMENT
,让存储引擎自己为表生成主键,而不是我们手动插入 , 比如: person_info
表:
CREATE TABLE person_info(
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
name VARCHAR(100) NOT NULL,
birthday DATE NOT NULL,
phone_number CHAR(11) NOT NULL,
country varchar(100) NOT NULL,
PRIMARY KEY (id),
KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)
);
我们自定义的主键列 id
拥有 AUTO_INCREMENT
属性,在插入记录时存储引擎会自动为我们填入自增的主键值。这样的主键占用空间小,顺序写入,减少页分裂。
这两条 sql 哪种写法更好
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
创建索引
CREATE INDEX idx_name ON student(NAME);
第一种:索引优化生效
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
mysql> SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
+---------+---------+--------+------+---------+
| id | stuno | name | age | classId |
+---------+---------+--------+------+---------+
| 5301379 | 1233401 | AbCHEa | 164 | 259 |
| 7170042 | 3102064 | ABcHeB | 199 | 161 |
| 1901614 | 1833636 | ABcHeC | 226 | 275 |
| 5195021 | 1127043 | abchEC | 486 | 72 |
| 4047089 | 3810031 | AbCHFd | 268 | 210 |
| 4917074 | 849096 | ABcHfD | 264 | 442 |
| 1540859 | 141979 | abchFF | 119 | 140 |
| 5121801 | 1053823 | AbCHFg | 412 | 327 |
| 2441254 | 2373276 | abchFJ | 170 | 362 |
| 7039146 | 2971168 | ABcHgI | 502 | 465 |
| 1636826 | 1580286 | ABcHgK | 71 | 262 |
| 374344 | 474345 | abchHL | 367 | 212 |
| 1596534 | 169191 | AbCHHl | 102 | 146 |
...
| 5266837 | 1198859 | abclXe | 292 | 298 |
| 8126968 | 4058990 | aBClxE | 316 | 150 |
| 4298305 | 399962 | AbCLXF | 72 | 423 |
| 5813628 | 1745650 | aBClxF | 356 | 323 |
| 6980448 | 2912470 | AbCLXF | 107 | 78 |
| 7881979 | 3814001 | AbCLXF | 89 | 497 |
| 4955576 | 887598 | ABcLxg | 121 | 385 |
| 3653460 | 3585482 | AbCLXJ | 130 | 174 |
| 1231990 | 1283439 | AbCLYH | 189 | 429 |
| 6110615 | 2042637 | ABcLyh | 157 | 40 |
+---------+---------+--------+------+---------+
401 rows in set, 1 warning (0.01 sec)
第二种:索引优化失效
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
mysql> SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
+---------+---------+--------+------+---------+
| id | stuno | name | age | classId |
+---------+---------+--------+------+---------+
| 5301379 | 1233401 | AbCHEa | 164 | 259 |
| 7170042 | 3102064 | ABcHeB | 199 | 161 |
| 1901614 | 1833636 | ABcHeC | 226 | 275 |
| 5195021 | 1127043 | abchEC | 486 | 72 |
| 4047089 | 3810031 | AbCHFd | 268 | 210 |
| 4917074 | 849096 | ABcHfD | 264 | 442 |
| 1540859 | 141979 | abchFF | 119 | 140 |
| 5121801 | 1053823 | AbCHFg | 412 | 327 |
| 2441254 | 2373276 | abchFJ | 170 | 362 |
| 7039146 | 2971168 | ABcHgI | 502 | 465 |
| 1636826 | 1580286 | ABcHgK | 71 | 262 |
| 374344 | 474345 | abchHL | 367 | 212 |
| 1596534 | 169191 | AbCHHl | 102 | 146 |
...
| 5266837 | 1198859 | abclXe | 292 | 298 |
| 8126968 | 4058990 | aBClxE | 316 | 150 |
| 4298305 | 399962 | AbCLXF | 72 | 423 |
| 5813628 | 1745650 | aBClxF | 356 | 323 |
| 6980448 | 2912470 | AbCLXF | 107 | 78 |
| 7881979 | 3814001 | AbCLXF | 89 | 497 |
| 4955576 | 887598 | ABcLxg | 121 | 385 |
| 3653460 | 3585482 | AbCLXJ | 130 | 174 |
| 1231990 | 1283439 | AbCLYH | 189 | 429 |
| 6110615 | 2042637 | ABcLyh | 157 | 40 |
+---------+---------+--------+------+---------+
401 rows in set, 1 warning (3.62 sec)
type 为 “ALL”,表示没有使用到索引,查询时间为 3.62 秒,查询效率较之前低很多。
再举例:
student 表的字段 stuno 上设置有索引
CREATE INDEX idx_sno ON student(stuno);
索引优化失效:(假设:student 表的字段 stuno 上设置有索引)
EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno+1 = 900001;
运行结果:
索引优化生效:
EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno = 900000;
再举例:
student 表的字段 name 上设置有索引
CREATE INDEX idx_name ON student(NAME);
EXPLAIN SELECT id, stuno, name FROM student WHERE SUBSTRING(name, 1,3)='abc';
索引优化生效
EXPLAIN SELECT id, stuno, NAME FROM student WHERE NAME LIKE 'abc%';
下列哪个 sql 语句可以用到索引。(假设 name 字段上设置有索引)
# 未使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name=123;
# 使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name='123';
name=123 发生类型转换,索引失效。
ALTER TABLE student DROP INDEX idx_name;
ALTER TABLE student DROP INDEX idx_age;
ALTER TABLE student DROP INDEX idx_age_classid;
EXPLAIN SELECT SQL_NO_CACHE * FROM student
WHERE student.age=30 AND student.classId>20 AND student.name = 'abc' ;
create index idx_age_name_classId on student(age,name,classId);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abc' AND student.classId>20;
应用开发中范围查询,例如:金额查询,日期查询往往都是范围查询。应将查询条件放置 where 语句最后。(创建的联合索引中,务必把范围涉及到的字段写在最后)
CREATE INDEX idx_name ON student(NAME);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name <> 'abc';
或者
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name != 'abc';
场景举例:用户提出需求,将财务数据,产品利润金额不等于 0 的都统计出来。
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NULL;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NOT NULL;
结论:最好在设计数据库的时候就将
字段设置为 NOT NULL 约束
,比如你可以将 INT 类型的字段,默认值设置为 0。将字符类型的默认值设置为空字符串 (’’)。 扩展:同理,在查询中使用not like
也无法使用索引,导致全表扫描。
在使用 LIKE 关键字进行查询的查询语句中,如果匹配字符串的第一个字符为’%’,索引就不会起作用。只有’%' 不在第一个位置,索引才会起作用。
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name LIKE 'ab%';
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name LIKE '%ab%';
拓展:Alibaba《Java 开发手册》 【强制】页面搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决。
在 WHERE 子句中,如果在 OR 前的条件列进行了索引,而在 OR 后的条件列没有进行索引,那么索引会失效。也就是说,OR 前后的两个条件中的列都是索引时,查询中才使用索引。
因为 OR 的含义就是两个只要满足一个即可,因此 只有一个条件列进行了索引是没有意义的
,只要有条件列没有进行索引,就会进行 全表扫描
,因此所以的条件列也会失效。
查询语句使用 OR 关键字的情况:
# 未使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 10 OR classid = 100;
因为 classId 字段上没有索引,所以上述查询语句没有使用索引。
#使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 10 OR name = 'Abel';
因为 age 字段和 name 字段上都有索引,所以查询中使用了索引。你能看到这里使用到了 index_merge
,简单来说 index_merge 就是对 age 和 name 分别进行了扫描,然后将这两个结果集进行了合并。这样做的好处就是 避免了全表扫描
。
统一使用 utf8mb4 (5.5.3 版本以上支持) 兼容性更好,统一字符集可以避免由于字符集转换产生的乱码。不 同的 字符集
进行比较前需要进行 转换
会造成索引失效。
** 练习:** 假设:index (a,b,c)
一般性建议
总之,书写 SQL 语句时,尽量避免造成索引失效的情况
# 分类
CREATE TABLE IF NOT EXISTS `type` (
`id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`id`)
);
#图书
CREATE TABLE IF NOT EXISTS `book` (
`bookid` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`bookid`)
);
#向分类表中添加20条记录
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
#向图书表中添加20条记录
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
下面开始 EXPLAIN 分析
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
结论:type 有 All
添加索引优化
ALTER TABLE book ADD INDEX Y ( card); #【被驱动表】,可以避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
可以看到第二行的 type 变为了 ref,rows 也变成了优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以 右边是我们的关键点,一定需要建立索引
。
ALTER TABLE `type` ADD INDEX X (card); #【驱动表】,无法避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
接着:
DROP INDEX Y ON book;
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
drop index X on type;
drop index Y on book;(如果已经删除了可以不用再执行该操作)
换成 inner join(MySQL 自动选择驱动表)
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
添加索引优化
ALTER TABLE book ADD INDEX Y (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
ALTER TABLE type ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
对于内连接来说,查询优化器可以决定谁作为驱动表,谁作为被驱动表出现的
接着:
DROP INDEX X ON `type`;
EXPLAIN SELECT SQL_NO_CACHE * FROM TYPE INNER JOIN book ON type.card=book.card;
接着:
ALTER TABLE `type` ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card=book.card;
接着:
#向图书表中添加20条记录
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
ALTER TABLE book ADD INDEX Y (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON `type`.card = book.card;
图中发现,由于 type 表数据大于 book 表数据,MySQL 选择将 type 作为被驱动表。
join 方式连接多个表,本质就是各个表之间数据的循环匹配。MySQL5.5 版本之前,MySQL 只支持一种表间关联方式,就是嵌套循环 (Nested Loop Join)。如果关联表的数据量很大,则 join 关联的执行时间会很长。在 MySQL5.5 以后的版本中,MySQL 通过引入 BNLJ 算法来优化嵌套执行。
驱动表就是主表,被驱动表就是从表、非驱动表。
SELECT * FROM A JOIN B ON ...
A 一定是驱动表吗?不一定,优化器会根据你查询语句做优化,决定先查哪张表。先查询的那张表就是驱动表,反之就是被驱动表。通过 explain 关键字可以查看。
SELECT * FROM A LEFT JOIN B ON ...
# 或
SELECT * FROM B RIGHT JOIN A ON ...
通常,大家会认为 A 就是驱动表,B 就是被驱动表。但也未必。测试如下:
CREATE TABLE a(f1 INT, f2 INT, INDEX(f1)) ENGINE=INNODB;
CREATE TABLE b(f1 INT, f2 INT) ENGINE=INNODB;
INSERT INTO a VALUES(1,1),(2,2),(3,3),(4,4),(5,5),(6,6);
INSERT INTO b VALUES(3,3),(4,4),(5,5),(6,6),(7,7),(8,8);
SELECT * FROM b;
# 测试1
EXPLAIN SELECT * FROM a LEFT JOIN b ON(a.f1=b.f1) WHERE (a.f2=b.f2);
# 测试2
EXPLAIN SELECT * FROM a LEFT JOIN b ON(a.f1=b.f1) AND (a.f2=b.f2);
算法相当简单,从表 A 中取出一条数据 1,遍历表 B,将匹配到的数据放到 result… 以此类推,驱动表 A 中的每一条记录与被驱动表 B 的记录进行判断:
可以看到这种方式效率是非常低的,以上述表 A 数据 100 条,表 B 数据 1000 条计算,则 A*B=10 万次。开销统计如下:
当然 mysql 肯定不会这么粗暴的去进行表的连接,所以就出现了后面的两种对 Nested-Loop Join 优化算法。
Index Nested-Loop Join 其优化的思路主要是为了 减少内存表数据的匹配次数
,所以要求被驱动表上必须 有索引
才行。通过外层表匹配条件直接与内层表索引进行匹配,避免和内存表的每条记录去进行比较,这样极大的减少了对内存表的匹配次数。
驱动表中的每条记录通过被驱动表的索引进行访问,因为索引查询的成本是比较固定的,故 mysql 优化器都倾向于使用记录数少的表作为驱动表(外表)。
如果被驱动表加索引,效率是非常高的,但如果索引不是主键索引,所以还得进行一次回表查询。相比,被驱动表的索引是主键索引,效率会更高。
注意: 这里缓存的不只是关联表的列,select 后面的列也会缓存起来。 在一个有 N 个 join 关联的 sql 中会分配 N-1 个 join buffer。所以查询的时候尽量减少不必要的字段,可以让 join buffer 中可以存放更多的列。
参数设置:
通过 show variables like '%optimizer_switch%
查看 block_nested_loop
状态。默认是开启的。
驱动表能不能一次加载完,要看 join buffer 能不能存储所有的数据,默认情况下 join_buffer_size=256k
。
mysql> show variables like '%join_buffer%';
join_buffer_size 的最大值在 32 位操作系统可以申请 4G,而在 64 位操作系统下可以申请大于 4G 的 Join Buffer 空间(64 位 Windows 除外,其大值会被截断为 4GB 并发出警告)。
1、整体效率比较:INLJ > BNLJ > SNLJ
2、永远用小结果集驱动大结果集(其本质就是减少外层循环的数据数量)(小的度量单位指的是表行数 * 每行大小)
select t1.b,t2.* from t1 straight_join t2 on (t1.b=t2.b) where t2.id<=100; # 推荐
select t1.b,t2.* from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=100; # 不推荐
3、为被驱动表匹配的条件增加索引 (减少内存表的循环匹配次数)
4、增大 join buffer size 的大小(一次索引的数据越多,那么内层包的扫描次数就越少)
5、减少驱动表不必要的字段查询(字段越少,join buffer 所缓存的数据就越多)
从 MySQL 的 8.0.20 版本开始将废弃 BNLJ,因为从 MySQL8.0.18 版本开始就加入了 hash join 默认都会使用 hash join
大数据集连接
时的常用方式,优化器使用两个表中较小(相对较小)的表利用 Join Key 在内存中建立 散列表
,然后扫描较大的表并探测散列表,找出与 Hash 表匹配的行。
若干不同的分区
,不能放入内存的部分就把该分区写入磁盘的临时段,此时要求有较大的临时段从而尽量提高 I/O 的性能。MySQL 从 4.1 版本开始支持子查询,使用子查询可以进行 SELECT 语句的嵌套查询,即一个 SELECT 查询的结 果作为另一个 SELECT 语句的条件。 子查询可以一次性完成很多逻辑上需要多个步骤才能完成的SQL操作
。
** 子查询是 MySQL 的一项重要的功能,可以帮助我们通过一个 SQL 语句实现比较复杂的查询。但是,子 查询的执行效率不高。** 原因:
① 执行子查询时,MySQL 需要为内层查询语句的查询结果 建立一个临时表 ,然后外层查询语句从临时表 中查询记录。查询完毕后,再 撤销这些临时表 。这样会消耗过多的 CPU 和 IO 资源,产生大量的慢查询。
② 子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都 不会存在索引 ,所以查询性能会 受到一定的影响。
③ 对于返回结果集比较大的子查询,其对查询性能的影响也就越大。
** 在 MySQL 中,可以使用连接(JOIN)查询来替代子查询。** 连接查询 不需要建立临时表
,其 速度比子查询
要快 ,如果查询中使用索引的话,性能就会更好。
举例 1:查询学生表中是班长的学生信息
# 创建班级表中班长的索引
CREATE INDEX idx_monitor ON class(monitor);
EXPLAIN SELECT * FROM student stu1
WHERE stu1.`stuno` IN (
SELECT monitor
FROM class c
WHERE monitor IS NOT NULL
)
EXPLAIN SELECT stu1.* FROM student stu1 JOIN class c
ON stu1.`stuno` = c.`monitor`
WHERE c.`monitor` is NOT NULL;
举例 2:取所有不为班长的同学
EXPLAIN SELECT SQL_NO_CACHE a.*
FROM student a
WHERE a.stuno NOT IN (
SELECT monitor FROM class b
WHERE monitor IS NOT NULL
);
执行结果如下:
EXPLAIN SELECT SQL_NO_CACHE a.*
FROM student a LEFT OUTER JOIN class b
ON a.stuno = b.monitor
WHERE b.monitor IS NULL;
结论:尽量不要使用 NOT IN 或者 NOT EXISTS,用 LEFT JOIN xxx ON xx WHERE xx IS NULL 替代
问题:在 WHERE 条件字段上加索引,但是为什么在 ORDER BY 字段上还要加索引呢?
回答:
在 MySQL 中,支持两种排序方式,分别是 FileSort
和 Index
排序。
效率更高
。内存中
进行排序,占用 CPU较多
。如果待排结果较大,会产生临时文件 I/O 到磁盘进行排序的情况,效率较低。优化建议:
避免全表扫描
,在 ORDER BY 子句 避免使用 FileSort 排序
。当然,某些情况下全表扫描,或者 FileSort 排序不一定比索引慢。但总的来说,我们还是要避免,以提高查询效率。删除 student 表和 class 表中已创建的索引。
# 方式1
DROP INDEX idx_monitor ON class;
DROP INDEX idx_cid ON student;
DROP INDEX idx_age ON student;
DROP INDEX idx_name ON student;
DROP INDEX idx_age_name_classId ON student;
DROP INDEX idx_age_classId_name ON student;
# 方式2
call proc_drop_index('atguigudb2','student';)
以下是否能使用到索引, 能否去掉using filesort
过程一:
过程二: order by 时不 limit, 索引失效
过程三:order by 时顺序错误,索引失效
过程四:order by 时规则不一致,索引失效(顺序错,不索引;方向反,不索引)
结论:ORDER BY 子句,尽量使用 Index 方式排序,避免使用 FileSort 方式排序
小结
INDEX a_b_c(a,b,c)
order by 能使用索引最左前缀
- ORDER BY a
- ORDER BY a,b
- ORDER BY a,b,c
- ORDER BY a DESC,b DESC,c DESC
如果WHERE使用索引的最左前缀定义为常量,则order by 能使用索引
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b = const ORDER BY c
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b > const ORDER BY b,c
不能使用索引进行排序
- ORDER BY a ASC,b DESC,c DESC /* 排序不一致 */
- WHERE g = const ORDER BY b,c /*丢失a索引*/
- WHERE a = const ORDER BY c /*丢失b索引*/
- WHERE a = const ORDER BY a,d /*d不是索引的一部分*/
- WHERE a in (...) ORDER BY b,c /*对于排序来说,多个相等条件也是范围查询*/
ORDER BY 子句,尽量使用 Index 方式排序,避免使用 FileSort 方式排序。
执行案例前先清除 student 上的索引,只留主键:
DROP INDEX idx_age ON student;
DROP INDEX idx_age_classid_stuno ON student;
DROP INDEX idx_age_classid_name ON student;
#或者
call proc_drop_index('atguigudb2','student');
场景:查询年龄为 30 岁的,且学生编号小于 101000 的学生,按用户名称排序
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
查询结果如下:
mysql> SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME;
+---------+--------+--------+------+---------+
| id | stuno | name | age | classId |
+---------+--------+--------+------+---------+
| 922 | 100923 | elTLXD | 30 | 249 |
| 3723263 | 100412 | hKcjLb | 30 | 59 |
| 3724152 | 100827 | iHLJmh | 30 | 387 |
| 3724030 | 100776 | LgxWoD | 30 | 253 |
| 30 | 100031 | LZMOIa | 30 | 97 |
| 3722887 | 100237 | QzbJdx | 30 | 440 |
| 609 | 100610 | vbRimN | 30 | 481 |
| 139 | 100140 | ZqFbuR | 30 | 351 |
+---------+--------+--------+------+---------+
8 rows in set, 1 warning (3.16 sec)
结论:type 是 ALL,即最坏的情况。Extra 里还出现了 Using filesort, 也是最坏的情况。优化是必须的。
方案一:为了去掉 filesort 我们可以把索引建成
#创建新索引
CREATE INDEX idx_age_name ON student(age,NAME);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME;
这样我们优化掉了 using filesort
查询结果如下:
方案二:尽量让 where 的过滤条件和排序使用上索引
建一个三个字段的组合索引:
DROP INDEX idx_age_name ON student;
CREATE INDEX idx_age_stuno_name ON student (age,stuno,NAME);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME;
我们发现 using filesort 依然存在,所以 name 并没有用到索引,而且 type 还是 range 光看名字其实并不美好。原因是,因为 stuno是一个范围过滤
,所以索引后面的字段不会在使用索引了 。
结果如下:
mysql> SELECT SQL_NO_CACHE * FROM student
-> WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
+-----+--------+--------+------+---------+
| id | stuno | name | age | classId |
+-----+--------+--------+------+---------+
| 167 | 100168 | AClxEF | 30 | 319 |
| 323 | 100324 | bwbTpQ | 30 | 654 |
| 651 | 100652 | DRwIac | 30 | 997 |
| 517 | 100518 | HNSYqJ | 30 | 256 |
| 344 | 100345 | JuepiX | 30 | 329 |
| 905 | 100906 | JuWALd | 30 | 892 |
| 574 | 100575 | kbyqjX | 30 | 260 |
| 703 | 100704 | KJbprS | 30 | 594 |
| 723 | 100724 | OTdJkY | 30 | 236 |
| 656 | 100657 | Pfgqmj | 30 | 600 |
| 982 | 100983 | qywLqw | 30 | 837 |
| 468 | 100469 | sLEKQW | 30 | 346 |
| 988 | 100989 | UBYqJl | 30 | 457 |
| 173 | 100174 | UltkTN | 30 | 830 |
| 332 | 100333 | YjWiZw | 30 | 824 |
+-----+--------+--------+------+---------+
15 rows in set, 1 warning (0.00 sec)
结果竟然有 filesort 的 sql 运行速度, 超过了已经优化掉 filesort 的 sql ,而且快了很多,几乎一瞬间就出现了结果。
原因:
结论:
随着数据量的变化,选择的索引也会随之变化的
。思考:这里我们使用如下索引,是否可行?
DROP INDEX idx_age_stuno_name ON student;
CREATE INDEX idx_age_stuno ON student(age,stuno);
当然可以。
排序的字段若不在索引列上,则 filesort 会有两种算法:双路排序和单路排序
双路排序 (慢)
取一批数据,要对磁盘进行两次扫描,众所周知,IO 是很耗时的,所以在 mysql4.1 之后,出现了第二种 改进的算法,就是单路排序。
单路排序 (快)
从磁盘读取查询需要的 所有列 ,按照 order by 列在 buffer 对它们进行排序,然后扫描排序后的列表进行输出, 它的效率更快一些,避免了第二次读取数据。并且把随机 IO 变成了顺序 IO,但是它会使用更多的空间, 因为它把每一行都保存在内存中了。
结论及引申出的问题
sort_buffer
的容量,导致每次只能取 sort_buffer
容量大小的数据,进行排序(创建 tmp 文件,多路合并),排完再取 sort_buffer 容量大小,再排… 从而多次 I/O。优化策略
1. 尝试提高 sort_buffer_size
2. 尝试提高 max_length_for_sort_data
3. Order by 时 select * 是一个大忌。最好只 Query 需要的字段。
优化思路一
在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。
EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10) a WHERE t.id = a.id;
优化思路二
该方案适用于主键自增的表,可以把 Limit 查询转换成某个位置的查询 。
EXPLAIN SELECT * FROM student WHERE id > 2000000 LIMIT 10;
理解方式一:索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。一个索引包含了满足查询结果的数据就叫做覆盖索引。
理解方式二:非聚簇复合索引的一种形式,它包括在查询里的 SELECT、JOIN 和 WHERE 子句用到的所有列 (即建索引的字段正好是覆盖查询条件中所涉及的字段)。
简单说就是, 索引列+主键
包含 SELECT 到 FROM之间查询的列
。
举例一:
# 删除之前的索引
DROP INDEX idx_age_stuno ON student;
CREATE INDEX idx_age_name ON student(age, NAME);
EXPLAIN SELECT * FROM student WHERE age <> 20;
举例二:
EXPLAIN SELECT * FROM student WHERE NAME LIKE '%abc';
CREATE INDEX idx_age_name ON student(age, NAME);
EXPLAIN SELECT id,age,NAME FROM student WHERE NAME LIKE '%abc';
上述都使用到了声明的索引,下面的情况则不然,查询列依然多了 classId, 结果是未使用到索引:
EXPLAIN SELECT id,age,NAME,classId FROM student WHERE NAME LIKE '%abc';
有一张教师表,表定义如下:
create table teacher(
ID bigint unsigned primary key,
email varchar(64),
...
)engine=innodb;
讲师要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:
mysql> select col1, col2 from teacher where email='xxx';
如果 email 这个字段上没有索引,那么这个语句就只能做 全表扫描
。
MySQL 是支持前缀索引的。默认地,如果你创建索引的语句不指定前缀长度,那么索引就会包含整个字 符串。
mysql> alter table teacher add index index1(email);
#或
mysql> alter table teacher add index index2(email(6));
这两种不同的定义在数据结构和存储上有什么区别呢?下图就是这两个索引的示意图。
以及
如果使用的是 index1(即 email 整个字符串的索引结构),执行顺序是这样的:
这个过程中,只需要回主键索引取一次数据,所以系统认为只扫描了一行。
如果使用的是 index2(即 email (6) 索引结构),执行顺序是这样的:
也就是说 ** 使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。** 前面 已经讲过区分度,区分度越高越好。因为区分度越高,意味着重复的键值越少。
结论: 使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是你在选择是否使用前缀索引时需要考虑的一个因素。
Index Condition Pushdown (ICP) 是 MySQL 5.6 中新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。
optimizer_switch
控制: index_condition_pushdown
# 打开索引下推
SET optimizer_switch = 'index_condition_pushdown=on';
# 关闭索引下推
SET optimizer_switch = 'index_condition_pushdown=off';
EXPLAIN
语句输出结果中 Extra
列内容显示为 Using index condition
。二级索引 zip_last_first (简图,这里省略了数据页等信息)
InnDB
和 MyISAM
表,包括分区表 InnoDB
和 MyISAM
表InnoDB
表,ICP 仅用于 二级索引
。ICP 的目标是减少全行读取次数,从而减少 I/O 操作。从性能的角度考虑,你选择唯一索引还是普通索引呢?选择的依据是什么呢?
假设,我们有一个主键列为 ID 的表,表中有字段 k,并且在 k 上有索引,假设字段 k 上的值都不重复。
这个表的建表语句是:
mysql> create table test(
id int primary key,
k int not null,
name varchar(16),
index (k)
)engine=InnoDB;
表中 R1~R5 的 (ID,k) 值分别为 (100,1)、(200,2)、(300,3)、(500,5) 和 (600,6)。
假设,执行查询的语句是 select id from test where k=5。
那么,这个不同带来的性能差距会有多少呢?答案是, 微乎其微 。
为了说明普通索引和唯一索引对更新语句性能的影响这个问题,介绍一下 change buffer。
当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话, 在不影响数据一致性的前提下, InooDB会将这些更新操作缓存在change buffer中
,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行 change buffer 中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。
将 change buffer 中的操作应用到原数据页,得到最新结果的过程称为 merge 。除了 访问这个数据页
会触 发 merge 外,系统有 后台线程会定期
merge。在 数据库正常关闭(shutdown)
的过程中,也会执行 merge 操作。
如果能够将更新操作先记录在 change buffer, 减少读磁盘
,语句的执行速度会得到明显的提升。而且, 数据读入内存是需要占用 buffer pool 的,所以这种方式还能够 避免占用内存
,提高内存利用率。
唯一索引的更新就不能使用change buffer
,实际上也只有普通索引可以使用。
如果要在这张表中插入一个新记录 (4,400) 的话,InnoDB 的处理流程是怎样的?
问题:
不太理解哪种情况下应该使用 EXISTS,哪种情况应该用 IN。选择的标准是看能否使用表的索引吗?
回答:
问:在 MySQL 中统计数据表的行数,可以使用三种方式: SELECT COUNT (*) 、 SELECT COUNT (1) 和 SELECT COUNT (具体字段) ,使用这三者之间的查询效率是怎样的?
答:
在表查询中,建议明确字段,不要使用 * 作为查询的字段列表,推荐使用 SELECT <字段列表> 查询。原因:
① MySQL 在解析的过程中,会通过查询数据字典 将 "*" 按序转换成所有列名,这会大大的耗费资源和时间。
② 无法使用 覆盖索引
针对的是会扫描全表的 SQL 语句,如果你可以确定结果集只有一条,那么加上 LIMIT 1 的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度。
如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就不需要加上 LIMIT 1 了。
只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放 的资源而减少。
COMMIT 所释放的资源:
聊一个实际问题:淘宝的数据库,主键是如何设计的?
某些错的离谱的答案还在网上年复一年的流传着,甚至还成为了所谓的 MySQL 军规。其中,一个最明显的错误就是关于 MySQL 的主键设计。
大部分人的回答如此自信:用 8 字节的 BIGINT 做主键,而不要用 INT。 错
!
这样的回答,只站在了数据库这一层,而没有 从业务的角度
思考主键。主键就是一个自增 ID 吗?站在 2022 年的新年档口,用自增做主键,架构设计上可能 连及格都拿不到
。
自增 ID 做主键,简单易懂,几乎所有数据库都支持自增类型,只是实现上各自有所不同而已。自增 ID 除 了简单,其他都是缺点,总体来看存在以下几方面的问题:
为了能够唯一地标识一个会员的信息,需要为 会员信息表 设置一个主键。那么,怎么为这个表设置主 键,才能达到我们理想的目标呢? 这里我们考虑业务字段做主键。
表数据如下:
在这个表里,哪个字段比较合适呢?
会员卡号(cardno)看起来比较合适,因为会员卡号不能为空,而且有唯一性,可以用来 标识一条会员 记录。
mysql> CREATE TABLE demo.membermaster
-> (
-> cardno CHAR(8) PRIMARY KEY, -- 会员卡号为主键
-> membername TEXT,
-> memberphone TEXT,
-> memberpid TEXT,
-> memberaddress TEXT,
-> sex TEXT,
-> birthday DATETIME
-> );
Query OK, 0 rows affected (0.06 sec)
不同的会员卡号对应不同的会员,字段 “cardno” 唯一地标识某一个会员。如果都是这样,会员卡号与会 员一一对应,系统是可以正常运行的。
但实际情况是, 会员卡号可能存在重复使用 的情况。比如,张三因为工作变动搬离了原来的地址,不再 到商家的门店消费了 (退还了会员卡),于是张三就不再是这个商家门店的会员了。但是,商家不想让 这个会 员卡空着,就把卡号是 “10000001” 的会员卡发给了王五。
从系统设计的角度看,这个变化只是修改了会员信息表中的卡号是 “10000001” 这个会员 信息,并不会影 响到数据一致性。也就是说,修改会员卡号是 “10000001” 的会员信息, 系统的各个模块,都会获取到修 改后的会员信息,不会出现 “有的模块获取到修改之前的会员信息,有的模块获取到修改后的会员信息, 而导致系统内部数据不一致” 的情况。因此,从 信息系统层面 上看是没问题的。
但是从使用 系统的业务层面 来看,就有很大的问题 了,会对商家造成影响。
比如,我们有一个销售流水表(trans),记录了所有的销售流水明细。2020 年 12 月 01 日,张三在门店 购买了一本书,消费了 89 元。那么,系统中就有了张三买书的流水记录,如下所示:
接着,我们查询一下 2020 年 12 月 01 日的会员销售记录:
mysql> SELECT b.membername,c.goodsname,a.quantity,a.salesvalue,a.transdate
-> FROM demo.trans AS a
-> JOIN demo.membermaster AS b
-> JOIN demo.goodsmaster AS c
-> ON (a.cardno = b.cardno AND a.itemnumber=c.itemnumber);
+------------+-----------+----------+------------+---------------------+
| membername | goodsname | quantity | salesvalue | transdate |
+------------+-----------+----------+------------+---------------------+
| 张三 | 书 | 1.000 | 89.00 | 2020-12-01 00:00:00 |
+------------+-----------+----------+------------+---------------------+
1 row in set (0.00 sec)
如果会员卡 “10000001” 又发给了王五,我们会更改会员信息表。导致查询时:
mysql> SELECT b.membername,c.goodsname,a.quantity,a.salesvalue,a.transdate
-> FROM demo.trans AS a
-> JOIN demo.membermaster AS b
-> JOIN demo.goodsmaster AS c
-> ON (a.cardno = b.cardno AND a.itemnumber=c.itemnumber);
+------------+-----------+----------+------------+---------------------+
| membername | goodsname | quantity | salesvalue | transdate |
+------------+-----------+----------+------------+---------------------+
| 王五 | 书 | 1.000 | 89.00 | 2020-12-01 00:00:00 |
+------------+-----------+----------+------------+---------------------+
1 row in set (0.01 sec)
这次得到的结果是:王五在 2020 年 12 月 01 日,买了一本书,消费 89 元。显然是错误的!结论:千万 不能把会员卡号当做主键。
会员电话可以做主键吗?不行的。在实际操作中,手机号也存在 被运营商收回 ,重新发给别人用的情况。
那身份证号行不行呢?好像可以。因为身份证决不会重复,身份证号与一个人存在一一对 应的关系。可 问题是,身份证号属于 个人隐私 ,顾客不一定愿意给你。要是强制要求会员必须登记身份证号,会把很 多客人赶跑的。其实,客户电话也有这个问题,这也是我们在设计会员信息表的时候,允许身份证号和 电话都为空的原因。
所以,建议尽量不要用跟业务有关的字段做主键。毕竟,作为项目设计的技术人员,我们谁也无法预测 在项目的整个生命周期中,哪个业务字段会因为项目的业务需求而有重复,或者重用之类的情况出现。
经验: 刚开始使用 MySQL 时,很多人都很容易犯的错误是喜欢用业务字段做主键,想当然地认为了解业 务需求,但实际情况往往出乎意料,而更改主键设置的成本非常高。
在淘宝的电商业务中,订单服务是一个核心业务。请问, 订单表的主键 淘宝是如何设计的呢?是自增 ID 吗?
打开淘宝,看一下订单信息:
从上图可以发现,订单号不是自增 ID!我们详细看下上述 4 个订单号:
1550672064762308113
1481195847180308113
1431156171142308113
1431146631521308113
订单号是 19 位的长度,且订单的最后 5 位都是一样的,都是 08113。且订单号的前面 14 位部分是单调递增的。
大胆猜测,淘宝的订单 ID 设计应该是:
订单ID = 时间 + 去重字段 + 用户ID后6位尾号
这样的设计能做到全局唯一,且对分布式系统查询及其友好。
非核心业务 :对应表的主键自增 ID,如告警、日志、监控等信息。
核心业务 : 主键设计至少应该是全局唯一且是单调递增
。全局唯一保证在各系统之间都是唯一的,单调 递增是希望插入时不影响数据库性能。
这里推荐最简单的一种主键设计:UUID。
UUID 的特点:
全局唯一,占用 36 字节,数据无序,插入性能差。
认识 UUID:
MySQL 数据库的 UUID 组成如下所示:
UUID = 时间+UUID版本(16字节)- 时钟序列(4字节) - MAC地址(12字节)
我们以 UUID 值 e0ea12d4-6473-11eb-943c-00155dbaa39d 举例:
为什么UUID是全局唯一的?
在 UUID 中时间部分占用 60 位,存储的类似 TIMESTAMP 的时间戳,但表示的是从 1582-10-15 00:00:00.00 到现在的 100ns 的计数。可以看到 UUID 存储的时间精度比 TIMESTAMPE 更高,时间维度发生重复的概率降 低到 1/100ns。
时钟序列是为了避免时钟被回拨导致产生时间重复的可能性。MAC 地址用于全局唯一。
为什么UUID占用36个字节?
UUID 根据字符串进行存储,设计时还带有无用 "-" 字符串,因此总共需要 36 个字节。
为什么UUID是随机无序的呢?
因为 UUID 的设计中,将时间低位放在最前面,而这部分的数据是一直在变化的,并且是无序。
改造 UUID
若将时间高低位互换,则时间就是单调递增的了,也就变得单调递增了。MySQL 8.0 可以更换时间低位和时间高位的存储方式,这样 UUID 就是有序的 UUID 了。
MySQL 8.0 还解决了 UUID 存在的空间占用的问题,除去了 UUID 字符串中无意义的 "-" 字符串,并且将字符串用二进制类型保存,这样存储空间降低为了 16 字节。
可以通过 MySQL8.0 提供的 uuid_to_bin 函数实现上述功能,同样的,MySQL 也提供了 bin_to_uuid 函数进行转化:
SET @uuid = UUID();
SELECT @uuid,uuid_to_bin(@uuid),uuid_to_bin(@uuid,TRUE);
通过函数 uuid_to_bin (@uuid,true) 将 UUID 转化为有序 UUID 了。全局唯一 + 单调递增,这不就是我们想要的主键!
有序 UUID 性能测试
16 字节的有序 UUID,相比之前 8 字节的自增 ID,性能和存储空间对比究竟如何呢?
我们来做一个测试,插入 1 亿条数据,每条数据占用 500 字节,含有 3 个二级索引,最终的结果如下所示:
从上图可以看到插入 1 亿条数据有序 UUID 是最快的,而且在实际业务使用中有序 UUID 在 业务端就可以生成
。还可以进一步减少 SQL 的交互次数。
另外,虽然有序 UUID 相比自增 ID 多了 8 个字节,但实际只增大了 3G 的存储空间,还可以接受。
在当今的互联网环境中,非常不推荐自增 ID 作为主键的数据库设计。更推荐类似有序 UUID 的全局 唯一的实现。 另外在真实的业务系统中,主键还可以加入业务和系统属性,如用户的尾号,机房的信息等。这样 的主键设计就更为考验架构师的水平了。
如果不是 MySQL8.0 肿么办?
手动赋值字段做主键!
比如,设计各个分店的会员表的主键,因为如果每台机器各自产生的数据需要合并,就可能会出现主键重复的问题。
可以在总部 MySQL 数据库中,有一个管理信息表,在这个表中添加一个字段,专门用来记录当前会员编号的最大值。
门店在添加会员的时候,先到总部 MySQL 数据库中获取这个最大值,在这个基础上加 1,然后用这个值 作为新会员的 “id”,同时,更新总部 MySQL 数据库管理信息表中的当前会员编号的最大值。
这样一来,各个门店添加会员的时候,都对同一个总部 MySQL 数据库中的数据表字段进行操作,就解 决了各门店添加会员时会员编号冲突的问题。