WRF中土地利用类型最高分辨率是30s,且主要分为MODIS和USGS两种,其中MODIS数据是从2000年(有的也说是2001年)的MODIS卫星遥感数据,按照IGBP20分类标准得到的,总共有21类(含第21类—Lake),USGS数据则是1992~1993年的,总共分为24类,具体类型可以参考userguide,这些数据时间都比较久远了,如果进行最新模拟的话相差20年了,所以进行了替换。
根据官方手册(下载地址见链接2)描述,第1-17类的土地利用类型具体介绍如下,而第18-20则缺少相关描述,我在官网论坛上也找了相关信息,说是之前提供这个第18-20类资料的人已经离职了,所以找不到对应的描述信息,由于在中国区域涉及第18-20类的比较少,我就没有进一步查找了,第21类为湖,也不用太多描述。
编号 | 土地利用类型 | 土地利用描述 |
---|---|---|
1 | Evergreen Needleleaf Forest(常绿针叶林) | Lands dominated by needleleaf woody vegetation with a percent cover >60% and height exceeding 2 m. Almost all trees remain green all year. Canopy is never without green foliage. |
2 | Evergreen Broadleaf Forest(常绿阔叶林) | Lands dominated by broadleaf woody vegetation with a percent cover >60% and height exceeding 2 m. Almost all trees and shrubs remain green year round. Canopy is never without green foliage. |
3 | Deciduous Needleleaf Forest(落叶针叶林) | Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 m. Consists of seasonal needleleaf tree communities with an annual cycle of leaf-on and leaf-off periods. |
4 | Deciduous Broadleaf Forest(落叶阔叶林) | Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 m. Consists of broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods. |
5 | Mixed Forests(混交林) | Lands dominated by trees with a percent cover >60% and height exceeding 2 m. Consists of tree communities with interspersed mixtures or mosaics of the other four forest types. None of the forest types exceeds 60% of landscape. |
6 | Closed Shrublands(封闭灌木丛) | Lands with woody vegetation less than 2 m tall and with shrub canopy cover >60%. The shrub foliage can be either evergreen or deciduous. |
7 | Open Shrublands(开阔灌木丛) | Lands with woody vegetation less than 2 m tall and with shrub canopy cover between 10% and 60%. The shrub foliage can be either evergreen or deciduous. |
8 | Woody Savannas(有林草原) | Lands with herbaceous and other understory systems, and with forest canopy cover between 30% and 60%. The forest cover height exceeds 2 m. |
9 | Savannas(稀树草原) | Lands with herbaceous and other understory systems, and with forest canopy cover between 10% and 30%. The forest cover height exceeds 2 m. |
10 | Grasslands(草原) | Lands with herbaceous types of cover. Tree and shrub cover is less than 10%. |
11 | Permanent Wetlands(永久湿地) | Lands with a permanent mixture of water and herbaceous or woody vegetation. The vegetation can be present either in salt, brackish, or fresh water. |
12 | Croplands(农田) | Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type. |
13 | Urban and Built-Up(城市和建筑) | Land covered by buildings and other man-made structures. |
14 | Cropland/Natural Vegetation Mosaic(农田/天然植被镶嵌) | Lands with a mosaic of croplands, forests, shrubland, and grasslands in which no one component comprises more than 60% of the landscape. |
15 | Snow and Ice(雪盖与冰盖) | Lands under snow/ice cover throughout the year. |
16 | Barren or Sparsely Vegetated(裸地或低植被覆盖地) | Lands with exposed soil, sand, rocks, or snow and never have more than 10% vegetated cover during any time of the year. |
17 | Water(水体) | Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or saltwater bodies. |
18 | Wooded Tundra(森林苔原) | 无 |
19 | Mixed Tundra(混合苔原) | 无 |
20 | Barren Tundra(裸地苔原) | 无 |
21 | Lake(湖) | 湖 |
目前能找到的土地利用数据很多,详细的请参考:土地覆盖/土地利用简介及数据集。
数据主要是考虑用来替换WRF里面的,避免由于引入新数据导致的模型运行出现问题,考虑了以下几种:
MODIS土地覆盖类型产品第六版(MCD12Q1_v06)是根据一年的Terra和Aqua观测所得的数据经过处理,描述土地覆盖的类型产品,分别采用了五个分类方案,如下:
根据国际地圈生物圈计划(IGBP),其中包括11个自然植被类型,3个土地开发和镶嵌的地类和3个非草木土地类型定义类。
根据MCD12Q1的用户手册说明,其IGBP类的定义和之前的IGBP定义差别不大。
MCD12Q1_IGBP
首先需要注册,详细过程请参考手把手的教你注册NASA Earthdata的账号简明教程。
下载地址:
https://lpdaac.usgs.gov/products/mcd12q1v006/
modis_download0
进入以后有多种方式可以选择下载区域,我这里直接矩形框选需要的区域,其中需要注意的是目前有2001年到2020年共20年的数据,直接框选后得到的是总共20年的数据,因此在左边Start
那里选择需要的年份。然后总共选中了38个瓦片数据,点击下载,得到下载链接。
modis_download1
modis_download4
我这里下载中国地区的瓦片,得到下载链接,使用Cygwin进行批量下载,即把得到的sh脚本复制到目录下,chmod 777
给权限,然后运行,其中需要输入前面注册的账号名和密码。
开始下载:
modis_download5
这里使用MRT进行拼接,关于下载和安装详细步骤请参考MODIS产品MCD12Q1数据介绍、下载与拼接重投影格式转换处理。可以点击View Selected Tile
按钮来查看瓦片的大致位置,如下图。
MRT_out0
其中发现有两个瓦片跑到西经那边去了,需要剔除,即:
MCD12Q1.A2020001.h12v02.006.2021359080627.hdf MCD12Q1.A2020001.h15v01.006.2021359110634.hdf
剔除后重新查看如下:
MRT_out2
其中投影要使用lambert投影,单位为度,需转为500m。
其中波段使用LC_Type1
,重采样方式为Bilinear
,投影类型为Geographic
,像素分辨率为0.004491576420597609
,投影参数点进去选择WGS84
,相关参数(右)和运行log(左)截图如下所示:
merge_modis
下载下来的数据为hdf格式的,需进一步处理。
处理数据的思路是先拼接—转换tiff—处理为geogrid二进制格式。使用convert_geotiff
进行处理,安装步骤在之前介绍过,具体参考安装convert_geotiff步骤详解。
转为二进制格式命令如下:
cd out
convert_geotiff -w 1 -t 5000 -u "category" -d "500m 17-category IGBP-MODIS landuse(China)" -b 0 -m 0 ../土地覆被_2020_China.tif
-w 1
:土地利用表征数字为从1-21(这里到17),使用一个字节进行存储就足够了;
-m 0
:tiff文件中用0来表示缺测值。
生成的瓦片最后一个文件名如下13501-15000.10501-12000
,tiff文件中栅格矩阵的13712 和列数11072刚好分别位于13501-15000
、10501-12000
中。
接着修改自动生成的index
文件:
projection = regular_ll
known_x = 1
known_y = 11130
known_lat = 59.997849
known_lon = 30.465094
dx = 4.492284e-03
dy = 4.489999e-03
type = continuous
signed = yes
units = "category"
description = "500m 17-category IGBP-MODIS landuse(China)"
wordsize = 1
tile_x = 5000
tile_y = 5000
tile_z = 1
tile_bdr = 0
missing_value = 0.000000
scale_factor = 1.000000
row_order = bottom_top
endian = little
index
是描述文件,geogrid会首先去读取index
,所以需要对其进行仔细检查。
首先查看输入的tiff文件信息:
from osgeo import gdal
def get_tif_info(tif):
dataset = gdal.Open(tif)
band = dataset.GetRasterBand(1)
xsize = band.XSize
ysize = band.YSize
maxmin = band.ComputeRasterMinMax()
geo = dataset.GetGeoTransform()
print('地理变换6元素:', geo)
print('栅格矩阵的列数:', xsize, '栅格矩阵的行数:', ysize)
print('最小最大值:', maxmin)
if __name__ == '__main__':
file = r'F:\LandCover\MCD12Q1\2020\China\geotiff\China2.LC_Type1.tif'
get_tif_info(file)
## 输出为:
地理变换6元素: (30.462848532138274, 0.004491576420597609, 0.0, 60.00009587599426, 0.0, -0.004491576420597609)
栅格矩阵的列数: 33291 栅格矩阵的行数: 11130
最小最大值: (1.0, 255.0)
使用GetGeoTransform()
输出tiff文件的地理信息六要素,可以发现栅格矩阵左上角(1,11130)格点的经纬度分别为:30.462848532138274,60.00009587599426,分辨率均为0.004491576420597609,和convert_geotiff
自动生成的大小差别不大,但为了更精确,对其修改从而保持一致。
known_lat = 60.00009587599426
known_lon = 30.462848532138274
dx = 4.491576420597609e-03
dy = 4.491576420597609e-03
其他参数的修改主要参照modis_landuse_20class_30s_with_lakes
数据集的index
进行修改。
首先土地利用类型是分类数据,需修改数据类型,即type=categorical
;设定土地利用类型最大最小值分别为1和21,即category_min=1
,category_max=21
不在这个范围的会被设为缺测;同时水体、湖、冰、城市这4类分别按照IGBP中的分类值进行设置;并且增加了mminlu="MODIFIED_IGBP_MODIS_NOAH"
,指定如何在LANDUSE.TBL
和VEGPARM.TBL
查找相关土地利用类型的参数,如反照率等;将signed = yes
进行删除。对应的修改项如下所示:
type=categorical
category_min=1
category_max=21
mminlu="MODIFIED_IGBP_MODIS_NOAH"
iswater=17
islake=21
isice=15
isurban=13
最终修改后index
文件如下:
index文件设置
在geog下建立一个modis_landuse_17class_500meter_China2020
的文件夹,将上面生成的一堆二进制文件和index文件都挪到这个文件夹下。
然后进入WPS的geogrid文件夹下,对其中的GEOGRID.TBL
进行修改,找到对应的LANDUSEF
部分,加上:
landmask_water = China_2020:17
interp_option = China_2020:nearest_neighbor
rel_path = China_2020:modis_landuse_17class_500meter_China2020/
然后在namelist.wps
中设置geog_data_res = 'China_2020'
即可调用新的土地利用类型数据了。
数据会在之后放在Zenodo上,可公众号后台回复China2020
获取相关链接进行下载。
挑选一个案例来看,将默认的和更新后的土地利用类型进行对比,结果如下:
默认土地利用类型:2000
2020年土地利用类型
其中实线为昆明的行政区划。可以发现红色的城市利用类型有所增加,但增加的不多,变化最为明显的Savannas(Tree cover 10-30% (canopy >2m).),官网下载界面提到了算法改变导致了第6版的显著变化。
MCD12Q1_URL1
[1] [References for geogrid static data] (https://forum.mmm.ucar.edu/phpBB3/viewtopic.php?f=75&t=168)
[2] [Table 1. IGBP land cover classification system] (http://www.eomf.ou.edu/static/IGBP.pdf)
[3] [WRF更换静态下垫面数据] (https://blog.csdn.net/weixin_42181785/article/details/114178200)
[4] [[土地覆盖/土地利用简介及数据集] (https://www.cnblogs.com/icydengyw/p/12431559.html)
[5] 《Multi-scale simulation of time-varying wind fields for Hangzhou Jiubao Bridge during Typhoon Chan-hom》
[6]《Uncertainties in Classification System Conversion and an Analysis of Inconsistencies in Global Land Cover Products》
[7] [How to replace MODIS Land Use data in WPS] (https://forum.mmm.ucar.edu/phpBB3/viewtopic.php?f=35&t=8328&p=13961&hilit=how+modis+hdf#p13961)
[8] [2000-2020年一带一路1km MODIS土地覆被数据] (https://data.casearth.cn/sdo/detail/5da578ab329b5613607cc989)
[9] [手把手的教你注册NASA Earthdata的账号简明教程] (https://ivpsr.com/988.html)
[10] [MODIS产品MCD12Q1数据介绍、下载与拼接重投影格式转换处理] (https://blog.csdn.net/qq_36958801/article/details/108096958)