前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析|附代码数据

R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析|附代码数据

原创
作者头像
拓端
发布2023-06-20 21:23:26
3060
发布2023-06-20 21:23:26
举报
文章被收录于专栏:拓端tecdat

值网格上计算套索LASSO或弹性网路惩罚的正则化路径

正则化(regularization)

该算法速度快,可以利用输入矩阵x中的稀疏性,拟合线性、logistic和多项式、poisson和Cox回归模型。可以通过拟合模型进行各种预测。它还可以拟合多元线性回归。”

例子

加载数据

这里加载了一个高斯(连续Y)的例子。

代码语言:javascript
复制
as_data_frame(y)
代码语言:javascript
复制
## # A tibble: 100 x 1
##            V1
##         <dbl>
##  1 -1.2748860
##  2  1.8434251
##  3  0.4592363
##  4  0.5640407
##  5  1.8729633
##  6  0.5275317
##  7  2.4346589
##  8 -0.8945961
##  9 -0.2059384
## 10  3.1101188
## # ... with 90 more rows

初始岭回归

cv.glmnet执行k-折交叉验证 .

代码语言:javascript
复制
## 执行岭回归
glmnet(x , y 
                 ## “alpha=1”是套索惩罚, “alpha=0”是岭惩罚。
                 alpha = 0) 
代码语言:javascript
复制
## 用10折CV进行岭回归
cv.glmnet(
                       ## 类型.测量:用于交叉验证的丢失。
                       type.measure = "mse",
                       ## K = 10 是默认值。
                       nfold = 10,
                       ##“alpha=1”是套索惩罚,“alpha=0”是岭惩罚。
                       alpha = 0)
## 惩罚vs CV MSE图 
代码语言:javascript
复制
## 在误差最小λ处提取系数
cv$lambda.min
代码语言:javascript
复制
## [1] 0.1789759
代码语言:javascript
复制
## s:需要进行预测的惩罚参数“lambda”的值。默认值是用于创建模型的整个序列。
coef( s = lambda.min)
代码语言:javascript
复制
## 21 x 1 sparse Matrix of class "dgCMatrix"
##                        1
## (Intercept)  0.149041059
## V1           1.302684272
## V2           0.035835380
## V3           0.719936146
## V4           0.036473087
## V5          -0.863490158
## V6           0.605750873
## V7           0.123446432
## V8           0.376890626
## V9          -0.040012847
## V10          0.105999328
## V11          0.240967604
## V12         -0.066363634
## V13         -0.042048935
## V14         -1.092107794
## V15         -0.119566353
## V16         -0.035859663
## V17         -0.038827463
## V18          0.061785988
## V19         -0.001409608
## V20         -1.079879797
代码语言:javascript
复制
## 截距估计应该剔除。
(coef(cv, s = lambda.min))[-1]

这个初始过程给出了基于10折交叉验证选择的最佳岭回归模型的一组系数,使用平方误差度量

作为模型性能度量。 KNNL和Hadi中提到的另一种选择lambda的方法是选择最小的lambda,这样系数的轨迹是稳定的,VIF变得足够小。在这种情况下,VIF的定义必须包括惩罚因子lambda,这在Hadi的p295和knll的p436中有说明。

是标准化的协变量矩阵. 

是原始非标准化协变量的相关矩阵 

. 该计算可定义如下。

代码语言:javascript
复制
 vif <- function(x, lambda) {
    ZtZ <- cor(x)
    diag(solve(ZtZ + lambdaI  %*% ZtZ %*% solve(ZtZ + lambdaI)
 
##

    ggplot(mapping = aes(x = lambda, y = value, group = key, color = key)) +
    geom_line() + 

自适应LASSO

代码语言:javascript
复制
## 执行自适应LASSO
glmnet(x =  y =
                  ## 类型。度量:用于交叉验证的损失。
                  ##“alpha=1”是套索惩罚,“alpha=0”是岭惩罚。
                  alpha = 1,
                  ##
                  ## 惩罚系数:可以对每个系数应用单独的惩罚因子。这是一个乘以“lambda”以允许差异收缩的数字。对于某些变量可以是0, 这意味着没有收缩,而且这个变量总是包含在模型中。对于所有变量,默认值为1(对于“exclude”中列出的变量,默认值为无限大)。注意:惩罚因子在内部被重新调整为与nvars相加,lambda序列将反映这种变化。 
代码语言:javascript
复制
## 使用10折CV执行自适应套索

                        ## 类型。度量:用于交叉验证的损失。
类型。测量= " mse ",
                        ## K = 10 是默认值。
                        nfold = 10,
                        ## ‘alpha = 1’ 是套索惩罚,'alpha=0'是岭惩罚。
                        ##
                        ## 惩罚系数:可以对每个系数应用单独的惩罚因子。这是一个乘以“lambda”以允许差异收缩的数字。对于某些变量可以为0,这意味着没有收缩,并且该变量始终包含在模型中。对于所有变量,默认值为1(对于“exclude”中列出的变量,默认值为无限大)。注意:惩罚因子在内部被重新调整为与nvars相加,lambda序列将反映这种变化。
## 惩罚vs CV MSE图 
代码语言:javascript
复制
## 在误差最小λ处提取系数
lambda.min
代码语言:javascript
复制
## [1] 0.7193664
代码语言:javascript
复制
## s:需要进行预测的惩罚参数“lambda”的值。默认值是用于创建模型的整个序列。
best_alasso_coef1
代码语言:javascript
复制
## 21 x 1 sparse Matrix of class "dgCMatrix"
##                      1
## (Intercept)  0.1269539
## V1           1.3863728
## V2           .        
## V3           0.7573538
## V4           .        
## V5          -0.8937983
## V6           0.5718800
## V7           .        
## V8           0.3654255
## V9           .        
## V10          .        
## V11          0.1824140
## V12          .        
## V13          .        
## V14         -1.1150736
## V15          .        
## V16          .        
## V17          .        
## V18          .        
## V19          .        
## V20         -1.1268794

那个惩罚系数参数允许指定系数特定的惩罚级别。这里我们使用自适应LASSO惩罚,即最佳岭系数绝对值的逆。

最终模型Rsquare

代码语言:javascript
复制
##  R^2函数
## https://en.wikipedia.org/wiki/Coefficient_of_determination
    ##  总SS
    ss_tot <- sum((y - ybar)^2)
    ## 剩余 SS
    ss_res <- sum((y - yhat)^2)
    ## R^2 = 1 - ss_res/ ss_tot

## 调整R^2函数
## n个样本,p个参数

## 获取 R^2
 r_sq(as.vector(y_cont), as.vector(predict(alasso1, newx = 
代码语言:javascript
复制
## [1] 0.906806
代码语言:javascript
复制
##获得调整R ^ 2
adj_r_sq(r_squared_alasso1, n = nrow(y_cont),
代码语言:javascript
复制
## [1] 0.9007934
代码语言:javascript
复制
## 交叉验证测试集R^2
## alasso1_cv$cvm[1] 是截距模型的交叉验证测试集均方误差。
1 - cvm[lambda == lambda.min] / cvm[1]
代码语言:javascript
复制
## [1] 0.8854662

交叉验证测试集Rsquare

代码语言:javascript
复制
lapply(unique(  foldid), function(id) {
    ## 拟合排除测试集 (foldid == id)
 glmnet(x = x_cont[alasso1_cv$foldid != id,],
                  y = y_cont[alasso1_cv$foldid != id], 
    ## 使用模型拟合最佳lambda测试集Yïhat
 predict(fit, newx = x_cont[alasso1_cv$foldid == id,],  
    ## 测试组 R^2
    1 - sum((y - y_pred)^2) / sum((y - mean(y))^2)
}) %>% 
代码语言:javascript
复制
##  [1] 0.8197796 0.9090972 0.9499495 0.8019303 0.8637534 0.7184797 0.8579943 0.9250376 0.8300891
## [10] 0.9188004
代码语言:javascript
复制
## [1] 0.8594911

多项式例子

代码语言:javascript
复制
## # A tibble: 500 x 30
##            V1         V2          V3         V4         V5         V6          V7         V8
##         <dbl>      <dbl>       <dbl>      <dbl>      <dbl>      <dbl>       <dbl>      <dbl>
##  1  0.8212500  1.2155090 -0.64860899 -0.7001262 -1.9640742  1.1692107  0.28598652 -0.1664266
##  2  0.9264925 -1.1855031 -1.18297879  0.9828354  1.0693610 -0.2302219  0.57772625 -0.8738714
##  3 -1.5719712  0.8568961 -0.02208733  1.7445962 -0.4148403 -2.0289054 -1.31228181 -1.2441528
##  4  0.7419447 -0.9452052 -1.61821790  1.0015587 -0.4589488  0.5154490  0.29189973  0.1114092
##  5 -0.1333660  0.5085678  0.04739909 -0.4486953 -0.2616950 -0.1554108 -1.24834832 -1.0498054
##  6 -0.5672062  0.6020396 -2.10300909  0.3119233  0.3272173 -0.8671885  0.97512759 -0.7216256
##  7  1.9683411  2.5162198  1.61109738  1.0047913 -0.5194647  1.0738680 -0.16176095 -0.4267418
##  8  0.2857727 -1.7017703  1.41062569 -0.5823727 -1.3330908  1.7929250  0.06396841 -0.6818909
##  9 -0.5339434  0.1725089  0.93504676 -1.9956942 -0.9021089 -0.2624043  0.97406411  0.5166823
## 10  0.8081052 -0.9662501  0.54666915 -0.8388913  0.9665053  1.4039598  0.63502500  0.3429640
## # ... with 490 more rows, and 22 more variables: V9 <dbl>, V10 <dbl>, V11 <dbl>, V12 <dbl>,
## #   V13 <dbl>, V14 <dbl>, V15 <dbl>, V16 <dbl>, V17 <dbl>, V18 <dbl>, V19 <dbl>, V20 <dbl>,
## #   V21 <dbl>, V22 <dbl>, V23 <dbl>, V24 <dbl>, V25 <dbl>, V26 <dbl>, V27 <dbl>, V28 <dbl>,
## #   V29 <dbl>, V30 <dbl>
代码语言:javascript
复制
as_data_frame(y)
代码语言:javascript
复制
## # A tibble: 500 x 1
##    value
##    <dbl>
##  1     3
##  2     2
##  3     2
##  4     2
##  5     3
##  6     3
##  7     3
##  8     1
##  9     1
## 10     1
## # ... with 490 more rows
代码语言:javascript
复制
plot(ridge2, xvar = "lambda")
代码语言:javascript
复制
## 用10折交叉验证CV进行岭回归
                        ## 类型.测量:用于交叉验证的损失。
类型.测量=“偏差”,
              
                       ## 多项式回归
                        ## ‘alpha = 1’ 是套索惩罚,'alpha=0'是岭惩罚。
## 惩罚vs CV MSE图
plot(ridge2_cv)
代码语言:javascript
复制
## 在误差最小λ处提取系数
 lambda.min
代码语言:javascript
复制
## [1] 0.02540802
代码语言:javascript
复制
## s:需要进行预测的惩罚参数“lambda”的值。默认值是用于创建模型的整个序列。
 do.call(cbind, coef( cv, s =  lambda.min)) 
代码语言:javascript
复制
## 31 x 3 sparse Matrix of class "dgCMatrix"
##                        1            1            1
## (Intercept) -0.030926870 -0.012579891  0.043506761
## V1           0.056754184 -0.332936704  0.276182520
## V2          -0.330771038 -0.135465951  0.466236989
## V3           0.417313228 -0.166953973 -0.250359256
## V4          -0.275107590 -0.075937714  0.351045304
## V5          -0.359310997  0.447318724 -0.088007727
## V6           0.318490592 -0.042273343 -0.276217249
## V7          -0.069203544  0.103874053 -0.034670509
## V8           0.398432356  0.056457793 -0.454890149
## V9          -0.100873703 -0.831473315  0.932347018
## V10         -0.079409535  0.550465763 -0.471056227
## V11          0.015539259  0.022872091 -0.038411350
## V12         -0.023384035 -0.037367749  0.060751784
## V13         -0.162456798  0.271096200 -0.108639401
## V14          0.173128811 -0.127758267 -0.045370544
## V15         -0.029448593  0.035626357 -0.006177764
## V16         -0.078135662  0.066353666  0.011781996
## V17          0.144753874 -0.137960413 -0.006793461
## V18          0.032929352  0.071275386 -0.104204738
## V19          0.090783173 -0.147044947  0.056261774
## V20         -0.010749594  0.146821172 -0.136071578
## V21          0.059468598 -0.008259112 -0.051209485
## V22          0.133514075 -0.030352819 -0.103161256
## V23          0.070174614 -0.054781769 -0.015392844
## V24          0.027344225  0.164797661 -0.192141886
## V25          0.010677968  0.014023080 -0.024701049
## V26          0.010490474 -0.034644559  0.024154085
## V27         -0.008201249  0.114562955 -0.106361705
## V28         -0.115249536 -0.067581191  0.182830727
## V29          0.027760120  0.056857406 -0.084617526
## V30         -0.062642211 -0.007339614  0.069981825
代码语言:javascript
复制
## 转换为矩阵
## 截距估计应该取消。
  1 / abs(as.matrix(best_ridge_coef2)[-1,]) 
代码语言:javascript
复制
##              1          1          1
## V1   17.619846   3.003574   3.620794
## V2    3.023239   7.381929   2.144832
## V3    2.396282   5.989675   3.994260
## V4    3.634942  13.168687   2.848635
## V5    2.783104   2.235542  11.362639
## V6    3.139810  23.655569   3.620339
## V7   14.450127   9.627043  28.842957
## V8    2.509836  17.712347   2.198333
## V9    9.913386   1.202684   1.072562
## V10  12.592946   1.816643   2.122889
## V11  64.353133  43.721407  26.033972
## V12  42.764219  26.761045  16.460422
## V13   6.155483   3.688727   9.204764
## V14   5.776046   7.827282  22.040732
## V15  33.957479  28.069106 161.870875
## V16  12.798253  15.070757  84.875262
## V17   6.908278   7.248456 147.200381
## V18  30.368044  14.030089   9.596493
## V19  11.015257   6.800642  17.774057
## V20  93.026766   6.811007   7.349073
## V21  16.815597 121.078385  19.527632
## V22   7.489847  32.945869   9.693562
## V23  14.250167  18.254248  64.965251
## V24  36.570794   6.068047   5.204487
## V25  93.650773  71.311008  40.484111
## V26  95.324582  28.864561  41.400864
## V27 121.932644   8.728825   9.401880
## V28   8.676825  14.797016   5.469540
## V29  36.022899  17.587858  11.817883
## V30  15.963677 136.246945  14.289424
代码语言:javascript
复制
## 执行自适应套索
                   ## 多项式回归
                  family = "multinomial",
                  ## ‘alpha = 1’ 是套索惩罚,'alpha=0'是岭惩罚。
                  alpha = 1,
                  ##
                  ## 惩罚系数:可以对每个系数应用单独的惩罚因子。这是一个乘以“lambda”以允许差异收缩的数字。对于某些变量可以为0,这意味着没有收缩,并且该变量始终包含在模型中。对于所有变量,默认值为1(对于“exclude”中列出的变量,默认值为无限大)。注意:惩罚因子在内部被重新调整为与nvars相加,lambda序列将反映这种变化。 
代码语言:javascript
复制
## 使用10折CV执行自适应套索
                      ## 类型。度量:用于交叉验证的损失。
                     type.measure = "偏差",
 
## 惩罚vs CV MSE图
plot(alasso2_cv)
代码语言:javascript
复制
## 在误差最小λ处提取系数
lambda.min
代码语言:javascript
复制
## [1] 0.023834
代码语言:javascript
复制
## s:需要进行预测的惩罚参数“lambda”的值。默认值是用于创建模型的整个序列。
do.call(cbind, coef(alasso2_cv, s = lambda.min)) 
代码语言:javascript
复制
## 31 x 3 sparse Matrix of class "dgCMatrix"
##                        1            1            1
## (Intercept)  0.001070916  0.029687114 -0.030758030
## V1           0.051853991 -0.329785101  0.277931110
## V2          -0.414609162 -0.166765504  0.581374666
## V3           0.498638681 -0.172468859 -0.326169822
## V4          -0.336005338 -0.079578260  0.415583598
## V5          -0.424216967  0.532071434 -0.107854467
## V6           0.364828074 -0.035326316 -0.329501758
## V7          -0.058746523  0.080343071 -0.021596548
## V8           0.483592031  0.111422669 -0.595014699
## V9          -0.155745580 -1.016502806  1.172248386
## V10         -0.060698812  0.625050169 -0.564351357
## V11          .            .            .          
## V12          .            .            .          
## V13         -0.175719655  0.283930678 -0.108211023
## V14          0.196421536 -0.139576235 -0.056845300
## V15          .            .            .          
## V16         -0.037414770  0.040300172 -0.002885402
## V17          0.149438019 -0.129742710 -0.019695308
## V18          .            .            .          
## V19          0.088822086 -0.130605368  0.041783282
## V20          .            .            .          
## V21          0.007141749 -0.002869644 -0.004272105
## V22          0.125997952 -0.016924514 -0.109073438
## V23          0.043024971 -0.026879150 -0.016145821
## V24          0.016862193  0.083686360 -0.100548554
## V25          .            .            .          
## V26          .            .            .          
## V27          .            .            .          
## V28         -0.111429811 -0.069842376  0.181272187
## V29          .            .            .          
## V30         -0.032032333 -0.006590025  0.038622358

最终模型正确分类率

代码语言:javascript
复制
xtabs(~ y_multi_pred_class + y_multi)
代码语言:javascript
复制
##                   y_multi
## y_multi_pred_class   1   2   3
##                  1  84  20  16
##                  2  30 136  19
##                  3  28  18 149
代码语言:javascript
复制
mean(y_multi == y_multi_pred_class)
代码语言:javascript
复制
## [1] 0.738

交叉验证测试集正确分类率

代码语言:javascript
复制
lapply(unique(foldid), function(id) {
    ## 拟合排除测试集(foldid==id)
    
    ## 使用模型拟合最佳lambda测试集Yïhat
    y_pred <- (predict(fit, newx = x_multi[foldid == id,], type = "class",
                                 s = lambda.min))
    ## 测试集Y
    y <- y_multi[foldid == id]
    ## 测试集CCR
    mean(y == y_pred)
}) %>% 
代码语言:javascript
复制
## [1] 0.68 0.64 0.76 0.72 0.70 0.66 0.60 0.72 0.62 0.76
代码语言:javascript
复制
## [1] 0.686

二元逻辑回归示例

代码语言:javascript
复制
## # A tibble: 100 x 30
##             V1          V2          V3          V4         V5         V6         V7          V8
##          <dbl>       <dbl>       <dbl>       <dbl>      <dbl>      <dbl>      <dbl>       <dbl>
##  1 -0.61926135  0.01624409 -0.62606831  0.41268461  0.4944374 -0.4493269  0.6760053 -0.06771419
##  2  1.09427278  0.47257285 -1.33714704 -0.64058126  0.2823199 -0.6093321  0.3547232 -0.62686515
##  3 -0.35670402  0.30121334  0.19056192  0.23402677  0.1698086  1.2291427  1.1628095  0.88024242
##  4 -2.46907012  2.84771447  1.66024352  1.56881297 -0.8330570 -0.5620088 -0.6142455 -1.76529838
##  5  0.56728852  0.88888747 -0.01158671  0.57627526 -0.8689453 -0.3132571  0.6902907 -1.29961200
##  6  0.91292543  0.77350086  0.55836355 -0.53509922  0.3507093 -0.5763021 -0.3882672  0.55518663
##  7  0.09567305  0.14027229 -0.76043921 -0.04935541  1.5740992 -0.1240903 -1.1106276  1.72895452
##  8  1.93420667 -0.71114983 -0.27387147  1.00113828  1.0439012  0.8028893 -0.6035769 -0.51136380
##  9  0.28275701  1.05940570 -0.03944966  0.30277367 -0.9161762  0.6914934  0.6087553  0.30921594
## 10  0.80143492  1.53674274 -1.01230763 -0.38480878 -2.0319100  0.2236314 -1.1628847 -0.52739792
## # ... with 90 more rows, and 22 more variables: V9 <dbl>, V10 <dbl>, V11 <dbl>, V12 <dbl>,
## #   V13 <dbl>, V14 <dbl>, V15 <dbl>, V16 <dbl>, V17 <dbl>, V18 <dbl>, V19 <dbl>, V20 <dbl>,
## #   V21 <dbl>, V22 <dbl>, V23 <dbl>, V24 <dbl>, V25 <dbl>, V26 <dbl>, V27 <dbl>, V28 <dbl>,
## #   V29 <dbl>, V30 <dbl>
代码语言:javascript
复制
as_data_frame(y)
代码语言:javascript
复制
## # A tibble: 100 x 1
##    value
##    <int>
##  1     0
##  2     1
##  3     1
##  4     0
##  5     1
##  6     0
##  7     0
##  8     0
##  9     1
## 10     1
## # ... with 90 more rows
代码语言:javascript
复制
 ## 执行岭回归
                 ## 二元逻辑回归
                 family = "binomial",
                 ## “alpha=1”是套索惩罚,“alpha=0”是岭惩罚。 
代码语言:javascript
复制
##用10折CV进行岭回归
                       ##类型。度量:用于交叉验证的损失。
                       type.measure = "deviance",
                       ## K = 10 是默认值。
                       nfold = 10,
                       ## 多项式回归
                       ## ‘alpha = 1’ 是套索惩罚,'alpha=0'是岭惩罚。
                       alpha = 0)
## 惩罚vs CV MSE图 
代码语言:javascript
复制
## 在误差最小λ处lambda.min
代码语言:javascript
复制
## [1] 0.03488898
代码语言:javascript
复制
## s:需要进行预测的惩罚参数“lambda”的值。默认值是用于创建模型的整个序列。
coef(ridge3_cv, s = lambda.min))
代码语言:javascript
复制
## 31 x 1 sparse Matrix of class "dgCMatrix"
##                         1
## (Intercept)  0.1718290283
## V1           0.1148574142
## V2           0.5068431000
## V3          -0.3384649794
## V4          -0.8634050979
## V5          -0.3141436782
## V6          -0.6956355852
## V7           0.0798900376
## V8          -0.5167458568
## V9           0.5193890584
## V10         -1.0182682093
## V11         -0.2077506627
## V12         -0.2218540968
## V13         -0.1638673635
## V14          0.1370473811
## V15          0.0388320169
## V16          0.3621440665
## V17         -0.1226309533
## V18         -0.1492504287
## V19         -0.0497939458
## V20         -0.2024006258
## V21          0.0006531455
## V22          0.2456970018
## V23          0.4333057414
## V24         -0.1769632495
## V25          0.5320062623
## V26         -0.3875044960
## V27         -0.2157079430
## V28          0.3337625633
## V29         -0.2659968175
## V30          0.1601149964
代码语言:javascript
复制
## 截距估计应该取消。
(best_ridge_coef3)[-1]
##执行自适应套索

                  ## 多项式回归
                  family = "binomial",
                  ## “alpha=1”是套索惩罚,“alpha=0”是岭惩罚。
                  alpha = 1, 
代码语言:javascript
复制
## 使用10折CV执行自适应套索
                     ## 类型。度量:用于交叉验证的损失。
     
##惩罚vs CV MSE图
plot(alasso3_cv)
代码语言:javascript
复制
## 在误差最小λ处提取系数
lambda.min
代码语言:javascript
复制
## [1] 0.5438827
代码语言:javascript
复制
## s:需要进行预测的惩罚参数“lambda”的值。默认值是用于创建模型的整个序列。
coef(cv, s = lambda.min)
代码语言:javascript
复制
## 31 x 1 sparse Matrix of class "dgCMatrix"
##                       1
## (Intercept)  0.19932789
## V1           .         
## V2           0.69081709
## V3          -0.48062268
## V4          -1.21628612
## V5           .         
## V6          -1.01918155
## V7           .         
## V8          -0.48394892
## V9           0.79804285
## V10         -1.49657785
## V11          .         
## V12          .         
## V13          .         
## V14          .         
## V15          .         
## V16          0.19759191
## V17          .         
## V18          .         
## V19          .         
## V20          .         
## V21          .         
## V22          0.04668665
## V23          0.24445410
## V24          .         
## V25          0.57951934
## V26         -0.21844124
## V27          .         
## V28          0.07144777
## V29         -0.04682770
## V30          .

 绘制ROC曲线 

代码语言:javascript
复制
## 提取预测概率和观察结果。
pY <- as.(predict(alasso3, newx = x_bin, s = lambda.min, type = "response"))
## 
## 用AUC和阈值绘制ROC曲线
plot(roc1)

交叉验证测试集AUC

代码语言:javascript
复制
lapply(unique(foldid), function(id) 
    ## 拟合排除测试集 (foldid == id)
   
    ## 使用模型拟合最佳lambda测试集Yïhat
    y_pred <- (predict(fit, newx = x_bin[foldid == id], s = lambda.min)
    ## 测试组 Y
    y <- y_bin[alasso3_cv$foldid == id]
    ## 测试组 AUC
roc(y ~ y_pred)$auc 
代码语言:javascript
复制
##  [1] 1.0000000 1.0000000 1.0000000 0.9200000 1.0000000 1.0000000 0.7619048 0.7916667 0.7200000
## [10] 0.9375000
代码语言:javascript
复制
## [1] 0.9131071

本文选自《R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析》。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 正则化(regularization)
  • 例子
    • 加载数据
      • 初始岭回归
        • 自适应LASSO
          • 最终模型Rsquare
            • 交叉验证测试集Rsquare
            • 多项式例子
              • 最终模型正确分类率
                • 交叉验证测试集正确分类率
                • 二元逻辑回归示例
                •  绘制ROC曲线 
                  • 交叉验证测试集AUC
                  相关产品与服务
                  数据万象
                  数据万象(Cloud Infinite,CI)是依托腾讯云对象存储的数据处理平台,涵盖图片处理、内容审核、媒体处理、AI 识别、文档预览等功能,为客户提供一站式的专业数据处理解决方案,满足您多种业务场景的需求。
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档