前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >文心一言 VS 讯飞星火 VS chatgpt (28)-- 算法导论5.1 3题

文心一言 VS 讯飞星火 VS chatgpt (28)-- 算法导论5.1 3题

原创
作者头像
福大大架构师每日一题
发布2023-06-01 20:48:52
1640
发布2023-06-01 20:48:52
举报
文章被收录于专栏:福大大架构师每日一题

三、假设你希望以1/2的概率输出0与 1。你可以自由使用一个输出0或1的过程 BIASED-RANDOM。它以某概率 p 输出1,概率 1-p 输出0,其中 0<p<1 ,但是 p 的值未知。请给出一个利用 BIASED-RANDOM 作为子程序的算法,返回一个无偏的结果,能以概率1/2返回0,以概率 1/2 返回1。作为 p 的函数,你的算法的期望运行时间是多少?

文心一言:

可以使用贝叶斯公式来计算无偏的结果。假设我们进行了n次试验,其中BIASED-RANDOM以概率p输出1,以概率1-p输出0。设N0为输出0的次数,N1为输出1的次数,则有N0+N1=n。根据贝叶斯公式,可以得到:

p(N0, N1|p) = p(N0, N1, p) / p(p)

其中,p(N0, N1, p)表示在n次试验中,N0次试验输出0,N1次试验输出1,且BIASED-RANDOM以概率p输出1的概率。p(p)表示概率p的概率密度函数,可以在已知p的范围的情况下计算得到。

由于要求无偏的结果,因此N0和N1的概率分布应该是相等的。因此,可以取p(N0, N1|p) = 1 / (n+1),并将此值作为算法的输出结果。

该算法的期望运行时间取决于n的大小。在最坏情况下,即n非常大时,每次试验都需要很长时间才能得到结果。因此,该算法的期望运行时间可能会非常大。但是,当n比较小的时候,该算法的运行时间是O(1)的。

在这里插入图片描述
在这里插入图片描述

讯飞星火:

我们可以使用 BIASED-RANDOM 作为子过程,来生成一个无偏的随机数。具体来说,我们可以利用 BIASED-RANDOM 生成两个独立的随机数 x 和 y,然后根据以下条件计算出一个新的随机数 z:

  • 如果 x 输出了 1,y 输出了 0,则 z 输出 0;
  • 如果 x 输出了 0,y 输出了 1,则 z 输出 1;
  • 否则,z 输出 x*y。

这个新的随机数 z 就是我们需要的结果。由于 BIASED-RANDOM 是无偏的,因此这个新随机数 z 也是无偏的。同时,由于 BIASED-RANDOM 只依赖于 p 和 x、y 两个独立的过程,因此它的期望运行时间是 O(p)。

现在我们来计算一下这个新随机数 z 的期望值。由于 BIASED-RANDOM 是一个二元过程,因此它的期望值为 pp+(1-p)(1-p)=2p^2-2p+1。而根据上面的条件,z 的期望值为:

E(z) = p(xy) + (1-p)(x(1-y)) + (1-p)(y(1-x))

= pxy + (1-p)x + (1-p)y

= pxy + px + py

= p(xy + x + y)

= p*z

因此,我们得到了一个新的期望运行时间为 O(p),并且能够以概率 1/2 返回 0、以概率 1/2 返回 1 的无偏随机数生成函数。

在这里插入图片描述
在这里插入图片描述

华为盘古:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

360智脑:

可以使用Bernoulli-Monte Carlo方法来实现。具体来说,可以设置BIASED-RANDOM过程的初始值为0,并不断迭代直到达到所需的输出结果。在每个迭代步骤中,将BIASED-RANDOM过程的输出乘以p并将结果加上 BIASED-RANDOM过程的当前值。重复此操作直到最终结果满足要求为止。这个算法的预期时间复杂度取决于BIASED-RANDOM过程的期望时间复杂度。在这种情况下,由于每次迭代都涉及到一次BIASED-RANDOM过程的输出,因此期望时间复杂度为O(EBIASED-RANDOM) = O(log Ex),其中E表示期望值。由于 BIASED-RANDOM 是一个二项分布,其期望值可以通过二项分布的性质来计算。因此,我们可以计算出BIASED-RANDOM的期望时间复杂度为O(log Ex),其中Ex表示任意两个连续时间点之间经过的时间间隔。

在这里插入图片描述
在这里插入图片描述

chatglm:

算法如下:

1.调用 BIASED-RANDOM 过程,得到概率 p 的值。

2.如果 p > 0.5,则返回 0。

3.如果 p < 0.5,则返回 1。

这种算法是无偏的,因为它不考虑 BIASED-RANDOM 过程的输出,而是根据 p 的值随机选择返回 0 或 1。

对于每个 p 的值,算法都需要调用 BIASED-RANDOM 过程一次,因此时间复杂度为 O(1)。

由于 BIASED-RANDOM 过程的输出是随机的,因此算法的期望运行时间与 p 的值有关。当 p 接近 0 或 1 时,算法的期望运行时间会相应缩短,因为在这种情况下,BIASED-RANDOM 过程的输出更可能接近 0 或 1。

在这里插入图片描述
在这里插入图片描述

chatgpt:

为了以 1/2 的概率输出 0 和 1,我们可以利用 BIASED-RANDOM 过程来实现。具体算法如下:

1.调用 BIASED-RANDOM 过程两次;

2.如果两次结果都是相同的,则返回这个结果;

3.否则,重复步骤 1。

由于 BIASED-RANDOM 过程只输出 0 和 1 两种结果,因此该算法的期望运行时间不会超过 3 次调用 BIASED-RANDOM 过程。接下来,我们分别考虑前两次调用 BIASED-RANDOM 过程的情况:

1.如果第一次和第二次调用的结果都是 0 或者都是 1,则直接返回这个结果即可;

2.如果第一次和第二次调用的结果不同,则需要再次调用 BIASED-RANDOM 过程,重复上述步骤。

由于 BIASED-RANDOM 过程的输出概率为 p 和 1-p,因此两次调用结果相同的概率为 p^2 + (1-p)^2,结果不同的概率为 2p(1-p)。因此,需要多次调用 BIASED-RANDOM 过程的概率为 2p(1-p),即:

P(需要多次调用) = 2p(1-p)

第一次和第二次调用结果相同的概率为 p^2 + (1-p)^2,即:

P(第一次和第二次结果相同) = p^2 + (1-p)^2

因此,算法的期望运行时间为:

E(T) = P(需要多次调用) * 2 + E(T) + P(第一次和第二次结果相同)

展开得到:

E(T) = 2p(1-p)*2+E(T) + (p^2 + (1-p)^2)

整理可得:

E(T) = 2 + 2p - 4p^2

因此,该算法的期望运行时间为 O(1),只需要进行常数次 BIASED-RANDOM 过程调用即可得到无偏结果。

在这里插入图片描述
在这里插入图片描述

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 三、假设你希望以1/2的概率输出0与 1。你可以自由使用一个输出0或1的过程 BIASED-RANDOM。它以某概率 p 输出1,概率 1-p 输出0,其中 0<p<1 ,但是 p 的值未知。请给出一个利用 BIASED-RANDOM 作为子程序的算法,返回一个无偏的结果,能以概率1/2返回0,以概率 1/2 返回1。作为 p 的函数,你的算法的期望运行时间是多少?
    • 文心一言:
      • 讯飞星火:
        • 华为盘古:
          • 360智脑:
            • chatglm:
              • chatgpt:
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档