title: "生信R"
author: "JB"
date: "2023-04-14"
output: html_document
#重点:数据框
#1.数据框来源
# (1)用代码新建:
#df1 <- data.frame(gene = paste0("gene",1:4),
#change = rep(c("up","down"),each = 2),
#score = c(5,3,-2,-4))
# (2)由已有数据转换或处理得到:merge(test1,test2,by="name")
# (3)读取表格文件:test=read.table("complete_set.txt",head=T)
# (4)R语言内置数据:iris,letters,volcano
#2.新建和读取数据框,如图所示:
df1 <- data.frame(gene = paste0("gene",1:4),
change = rep(c("up","down"),each = 2),
score = c(5,3,-2,-4))
df1

## gene change score
## 1 gene1 up 5
## 2 gene2 up 3
## 3 gene3 down -2
## 4 gene4 down -4
df2 <- read.csv("gene.csv")
df2
## gene change score
## 1 gene1 up 5
## 2 gene2 up 3
## 3 gene3 down -2
## 4 gene4 down -4
#3.数据框属性
#dim():行列,nrow():行数,ncol():列数
dim(df1)
## [1] 4 3
nrow(df1)
## [1] 4
ncol(df1)
## [1] 3
#rownames():行名,colnames():列名
rownames(df1)
## [1] "1" "2" "3" "4"
colnames(df1)
## [1] "gene" "change" "score"
#4.数据框取子集
df1$gene #删掉score,按tab键试试。tab键可以自动补齐工作路径下的文件。
## [1] "gene1" "gene2" "gene3" "gene4"
mean(df1$score)
## [1] 0.5
## 按坐标
df1[2,2]
## [1] "up"
df1[2,]
## gene change score
## 2 gene2 up 3
df1[,2]
## [1] "up" "up" "down" "down"
df1[c(1,3),1:2]
## gene change
## 1 gene1 up
## 3 gene3 down
## 按名字
df1[,"gene"]
## [1] "gene1" "gene2" "gene3" "gene4"
df1[,c('gene','change')]
## gene change
## 1 gene1 up
## 2 gene2 up
## 3 gene3 down
## 4 gene4 down
## 按条件(逻辑值)
df1[df1$score>0,]
## gene change score
## 1 gene1 up 5
## 2 gene2 up 3
## 代码思维
#如何取数据框的最后一列?
df1[,3]
## [1] 5 3 -2 -4
df1[,ncol(df1)]
## [1] 5 3 -2 -4
#如何取数据框除了最后一列以外的其他列?
df1[,-ncol(df1)] ##-用于数值型,!用于逻辑值型
## gene change
## 1 gene1 up
## 2 gene2 up
## 3 gene3 down
## 4 gene4 down
#筛选score > 0的基因
df1[df1$score > 0,1]
## [1] "gene1" "gene2"
df1$gene[df1$score > 0]
## [1] "gene1" "gene2"
#5.数据框修改
#改一个格
df1[3,3] <- 5
df1
## gene change score
## 1 gene1 up 5
## 2 gene2 up 3
## 3 gene3 down 5
## 4 gene4 down -4
#改一整列
df1$score <- c(12,23,50,2)
df1
## gene change score
## 1 gene1 up 12
## 2 gene2 up 23
## 3 gene3 down 50
## 4 gene4 down 2
#?
df1$p.value <- c(0.01,0.02,0.07,0.05)
df1
## gene change score p.value
## 1 gene1 up 12 0.01
## 2 gene2 up 23 0.02
## 3 gene3 down 50 0.07
## 4 gene4 down 2 0.05
##列名存在是修改,列名不存在是增加
#改行名和列名,数据框行名列名是向量,按照下面修改进行重新赋值
rownames(df1) <- c("r1","r2","r3","r4")
#只修改某一行/列的名
colnames(df1)[2] <- "CHANGE"
#6.两个数据框的连接
test1 <- data.frame(name = c('jimmy','nicker','Damon','Sophie'),
blood_type = c("A","B","O","AB"))
test1
## name blood_type
## 1 jimmy A
## 2 nicker B
## 3 Damon O
## 4 Sophie AB
test2 <- data.frame(name = c('Damon','jimmy','nicker','tony'),
group = c("group1","group1","group2","group2"),
vision = c(4.2,4.3,4.9,4.5))
test2
## name group vision
## 1 Damon group1 4.2
## 2 jimmy group1 4.3
## 3 nicker group2 4.9
## 4 tony group2 4.5
test3 <- data.frame(NAME = c('Damon','jimmy','nicker','tony'),
weight = c(140,145,110,138))
test3
## NAME weight
## 1 Damon 140
## 2 jimmy 145
## 3 nicker 110
## 4 tony 138
merge(test1,test2,by="name")
## name blood_type group vision
## 1 Damon O group1 4.2
## 2 jimmy A group1 4.3
## 3 nicker B group2 4.9
merge(test1,test3,by.x = "name",by.y = "NAME") ##by.x = "name",by.y = "NAME",x、y名字可以不同,但必须一一对应
## name blood_type weight
## 1 Damon O 140
## 2 jimmy A 145
## 3 nicker B 110

##### 矩阵和列表
m <- matrix(1:9, nrow = 3)
colnames(m) <- c("a","b","c") #加列名
m
## a b c
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
m[2,]
## a b c
## 2 5 8
m[,1]
## [1] 1 2 3
m[2,3]
## c
## 8
m[2:3,1:2]
## a b
## [1,] 2 5
## [2,] 3 6
m
## a b c
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
t(m) ##行变列,列变行
## [,1] [,2] [,3]
## a 1 2 3
## b 4 5 6
## c 7 8 9
as.data.frame(m) ##矩阵转化为数据框,但m没有被修改,因为m没有被赋值,只是在控制台上打出来看了下
## a b c
## 1 1 4 7
## 2 2 5 8
## 3 3 6 9
pheatmap::pheatmap(m,cluster_cols = F,cluster_rows = F) ##“cluster_cols = F,cluster_rows = F”不聚类
#列表:包含所有的数据类型
l <- list(m1 = matrix(1:9, nrow = 3),
m2 = matrix(2:9, nrow = 2))
l
## $m1
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
##
## $m2
## [,1] [,2] [,3] [,4]
## [1,] 2 4 6 8
## [2,] 3 5 7 9
##l取子集两种方法
l[[2]]
## [,1] [,2] [,3] [,4]
## [1,] 2 4 6 8
## [2,] 3 5 7 9
l$m1
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
##画图plot()函数:x轴是默认,y轴是iris[],颜色是col=iris[,5]
plot(iris[,1],col=iris[,5])
plot(iris[,2],col=iris[,5])
plot(iris[,3],col=iris[,5])
x=c(2,5,6,2,9);plot(x)
# 补充:元素的名字
plot(iris[,1:4])
scores = c(100,59,73,95,45)
names(scores) = c("jimmy","nicker","Damon","Sophie","tony")
scores
## jimmy nicker Damon Sophie tony
## 100 59 73 95 45
scores["jimmy"]
## jimmy
## 100
scores[c("jimmy","nicker")]
## jimmy nicker
## 100 59
names(scores)[scores>60]
## [1] "jimmy" "Damon" "Sophie"
# 删除
rm(l) ##删除l变量,l是变量,变量不同则()里的字母不同
rm(df1,df2) ##删除df1,df2变量,df1,df2是变量,变量不同则()里的字母不同
rm(list = ls()) ##清除全部变量
##ctrl+l:清空控制台,ctrl+z:恢复控制台,ctrl+enter:运行

引用自生信技能树小洁老师
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。