前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >腾讯 AI Lab 2018年度回顾

腾讯 AI Lab 2018年度回顾

作者头像
腾讯技术工程官方号
发布于 2019-01-30 04:21:56
发布于 2019-01-30 04:21:56
13.9K0
举报

2018年是颇具意义的一年,以“Make AI Everywhere”为愿景,我们在医疗、农业和公益等AI应用领域取得不错进展,也正在通过游戏和机器人等实验平台探索解决AI终极难题——通用人工智能——的道路。

展望2019年,我们将继续通过前沿研究提升AI的认知、决策和创造力深耕行业,拥抱消费互联网与产业互联网,做好“数字化助手”标配,提供更好的技术、工具与服务,为人们的日常生活和社会发展带来更多美好便利。

以下是我们对腾讯AI Lab在2018年重点工作的回顾,也预祝大家新春安康吉祥。

行业应用 科技向善

我们在 2018 年完成了一些很有意义的项目,如“图片语音即时描述”技术,让机器充分理解图像内容后,将其“翻译”成语句,让视障者使用QQ空间时,能听到对图片的描述,实时了解朋友动态。通过提供这一系列信息无障碍技术,腾讯今年获得了联合国教科文组织颁发的“数字技术增强残疾人权能奖”。

第二个例子是显微镜的进化,我们在这种古老而重要的医疗器械中加入了AI与AR技术,让机器自动识别、检测、定量计算和生成报告,并将检测结果实时显示到医生所看目镜中,在不打断医生阅片的同时及时提醒,提高医生的诊断效率和准确度。今年我们还会继续通过“腾讯觅影”产品深入探索AI+医疗的应用,目前图像处理技术已用在食管癌、肺癌、糖尿病性视网膜病变等疾病的早期筛查上,语言和语音处理技术也用于智能导诊和辅诊上。

AI 技术落地

腾讯智能显微镜

我们还在“AI+农业”迈出了一小步——一个很会“种”黄瓜的AI。在荷兰举办的国际AI温室种植大赛里,我们利用传感器和摄像头自动收集温室气候、作物发育情况等环境和作物数据,再用深度学习模型计算、判断和决策,驱动温室的设备元件,远程控制黄瓜生产,最后获总比分第二、AI策略第一的成绩,还开心收获了3496公斤黄瓜。

在腾讯视频中,我们提供了超分辨率和视频分类的技术。此外,我们还探索了对视频内容的深度理解、编辑与生成。比如,让机器深度分析一个视频,识别其中人物、物体、场景,并分析它们的关系,并在时间顺序识别视频中不同的动作和事件,产生能表达出视频丰富语义信息的语句。

而在视频生成上,我们研究的视频运动信息迁移技术,在给到几张人物A的静止图片后,能让A模仿人物B的舞蹈动作,从静止到“动”起来。

前沿难题 深度探索

定义下一代的智能交互 - 3D虚拟人

我们通过多个部门的共同研究,合作推进了“多模态人机交互”这一前沿课题。我们将计算机视觉自然语言处理、语音技术有机结合在一起,辅以一定的情绪认知、分析决策能力,赋予虚拟人看、听、想、说的多模态输入和输出能力,以实现更自然、逼真、风格鲜明、千人千面的人机交互体验。我们已经实现了整套技术方案的打通,并有望探索新的产品形式。

以游戏为实验平台,求解“通用人工智能”难题

游戏是 AI 研究的传统实验场,从2016年研发围棋AI“绝艺”起,我们不断利用这块实验沃土,探索迈向通用人工智能的道路。2018 年,我们收获颇丰,而此类探索还将继续下去。

我们与王者荣耀及王者荣耀职业联赛共同探索的前沿研究项目——策略协作型AI“绝悟”——首次亮相KPL决赛,与人类战队(超过99%玩家)进行5V5水平测试并取得胜利。我们使用了监督学习方法,模拟人类决策方法的算法模型兼具了大局观与微操能力,并在此基础上研发多个有针对性的强化学习训练模型,有效提升了AI团队协作能力。

此外,我们的深度强化学习智能体还在《星际争霸 II》战胜了Level-10内置 AI,还与清华大学合作拿下了FPS射击类游戏AI竞赛VizDoom赛事历史上首个中国区冠军

以机器人为载体,让虚拟连接现实

我们还成立了企业级机器人实验室“腾讯Robotics X”,构建AI+机器人双基础部门,打造虚拟世界到真实世界的载体与连接器。比如,我们从0到1实现了机械手从虚拟到现实的迁移,通过搭建满足各种物理属性的高逼真模拟器,支持多种强化学习算法,并能和机械臂和灵巧手的实体硬件接口兼容,通过新提出的DHER算法训练抓取、搭积木、端茶倒水等虚拟任务。我们还将其成功迁移到了现实世界中。

另外,在新建成的腾讯深圳总部展厅里,我们还完成了“绝艺”围棋机器人、桌上冰球和与浙江大学合作的机械狗等展示项目,体现了机器人的本体、控制、感知、决策方面的能力。

开源协同 多方合作

除了发表论文公开研究成果,我们也通过代码和数据开源将腾讯积累的技术能力(尤其是 AI 能力)共享给整个行业,并希望以此促进行业生态的共同发展和繁荣。

2018 年 10 月,我们开源了业内最大规模的多标签图像数据集Tencent ML-Images,其中包含了 1800 万图像和11000种常见物体类别。此外我们还提供了从图像下载和图像预处理,到基于ML-Images的预训练和基于ImageNet的迁移学习,再到基于训练所得模型的图像特征提取整个流程的代码和模型。截至目前已在 GitHub 获 2000 星和 2000+ 次下载。

我们还在 10 月份开源了一个大规模、高质量的中文词向量数据集,其中包含 800 多万中文词汇,在覆盖率、新鲜度及准确性上都优于之前的数据集。

11 月,我们开源了一个自动化深度学习模型压缩与加速框架 PocketFlow,其中整合了多种模型压缩与加速算法,并能利用强化学习自动搜索合适的压缩参数。我们希望该框架能降低模型压缩的技术门槛,赋能移动端 AI 应用开发

在高校合作方面,我们与麻省理工、牛津、斯坦福、港科大、清华和哈工大等全球知名高校的教授联合研究,并通过专项研究计划、访问学者计划、青年学者基金、联合实验室等多种方式,共探学术前沿领域,并迅速将研究应用到腾讯云、腾讯开放平台等多个业务中。

基础研究 推动边界

我们基础研究方向主要为四个:机器学习、计算机视觉、语音处理和自然语言处理。2018 年,我们有超过150 篇学术论文发表在各大顶级学术会议上,如NeurIPSICMLCVPRECCVACLEMNLPInterSpeech 和 ICASSP 等,位居国内企业前列。

未来,我们将继续关注前沿领域的研究课题,推进跨学科、多模态、交叉研究课题探索,以开放、合作和共赢的态度,不断探索研究的边界。

机器学习

学习能力,是区分智能机器和普通自动化机器的核心技能之一,也是迈向通用人工智能(AGI)的必备技能。我们的研究涵盖了强化学习、迁移学习、模仿学习、优化算法、弱监督和半监督学习、对抗学习和多任务学习等。

我们探索了自动化机器学习(AutoML)的可能性,这是当前机器学习领域的前沿探索方向之一。比如,我们提出了一种基于数据分布迁移的超参优化算法[1]。该方法利用分布相似度来迁移不同数据对应的超参优化结果,从而能对新数据的超参优化起到热启动的效果。我们还进一步研发了FastBO算法,并发现其在医疗和游戏等多个场景上有比人工调参更好的效果。

针对多任务问题,我们提出了一种学习框架 L2MT[2] ,能自动发掘一个最优的多任务学习模型;我们还提出了一种用学习迁移实现迁移学习的方法 L2T[3],能显著降低迁移学习的计算成本和所需的领域知识。

L2MT 框架

我们也为强化学习提出了一些改进方法,比如提出一种描述如何从环境和任务来组成强化学习策略的元规则部件神经网络,实现了自适应于不同环境、不同任务的合成策略[4]。我们还尝试用演示来提升强化学习的探索效果(POfD)[5]及使用联网智能体的完全去中心化多智能体强化学习[6]。

在计算机安全和社会安全上,我们研发的自动特征学习、群分类和图特征增强方面的算法,能成功识别和对抗黑产用户、涉黑群体和恶意用户(标记覆盖率超90%),还能精准识别有信贷风险的用户,帮助防控金融风险。

计算机视觉

计算机视觉技术有非常广泛的应用前景,是智能医疗、自动驾驶、增强现实、移动机器人等重要应用的不可或缺的一部分。我们不断寻找赋予机器更强大视觉能力的方法,以实时、稳健和准确地理解世界。

2018 年,我们的探索包括结合相机与其它传感器数据实现 3D 实时定位[1]、结合传统时空建模方法(MRF)与深度学习方法(CNN)来跟踪和分割视频中的物体[2],及一些在视频描述生成任务上的新方法[3]。我们还定义了一种名为视频重定位(Video re-localization)[4]的新任务,可在某段长视频中查找与指定视频语义相关片段。我们也为视频中的运动表征提出了一种端到端的神经网络TVNet[5]。

除了帮助机器理解世界,我们也在探索视频生成方面的技术,比如我们提出了一种自动生成延时摄影视频的解决方案[6],可以通过预测后续的图像帧来呈现可能发生的动态变化。我们也探索了多阶段动态生成对抗网络(MD-GAN)[7]在这一任务上的应用。

MD-GAN 框架

语音处理

我们的语音解决方案已经在腾讯的听听音箱、极光电视盒子和叮当音箱等产品中得到应用。2018 年,我们又提出了一些新的方法和改进,在语音增强、语音分离、语音识别语音合成等技术方向都取得了一定进展。

语音唤醒上,我们针对误唤醒、噪声环境中唤醒、快语速唤醒和儿童唤醒等问题,提出了一种新的语音唤醒模型[1],能显著提升关键词检测质量,在有噪声环境下表现突出,还能显著降低前端和关键词检测模块的功耗需求。我们还提出了一种基于 Inception-ResNet 的声纹识别系统框架[2],可学习更加鲁棒且更具有区分性的嵌入特征。

左:基准关键词检测架构   右:文本依赖型语音增强架构

语音识别上,我们的解决方案是结合了说话人特征的个性化识别模型,能为每位用户提取并保存个性化声学信息特征。随用户数据积累,个性化特征自动更新,用户识别准确率能显著提升。另外,我们还创新地提出了多类单元集合融合建模方案,这是一种实现了不同程度单元共享、参数共享、多任务的中英混合建模方案。这种方案能在基本不影响汉语识别准确度的情况下提升英语的识别水平。我们仍在噪声环境、多说话人场景[3]、“鸡尾酒会问题”[4]、多语言混杂等方面继续探索。

语音合成是确保机器与人类自然沟通的重要技术。腾讯在语音合成方面有深厚的技术积累,开发了可实现端到端合成和重音语调合成的新技术。腾讯AI Lab 2018 年在语调韵律变化[5]、说话风格迁移[6]等任务上取得了一些新进展。

自然语言处理

腾讯 AI Lab 在自然语言处理方面有广泛而又有针对性的研究,涉及文本理解、文本生成、人机对话、机器翻译等多个方向。

我们训练的模型在多个阅读理解类数据集上位居前列,如CMU大学的RACE、ARC (Easy/Challenge)及OpenBookQA等。

在神经网络机器翻译方面,我们通过改进当前主流翻译模型中的多层多头自注意力机制[1]和提出基于忠实度的训练框架[2],改善其核心的译文忠实度低的问题。我们还针对口语翻译中代词缺省的问题提出了一种联合学习方法[3],以及探索如何将外部的翻译记忆融入神经网络翻译模型[4]。

我们还发布了一款AI辅助翻译产品TranSmart[5],向人工翻译致敬。它采用业内领先的人机交互式机器翻译和辅助翻译输入法技术,配合亿级双语平行数据,为用户提供实时智能翻译辅助,帮助用户更好更快地完成翻译任务。作为笔译工具的未来形态,目前这个产品已经进入了很多高校翻译课堂。

我们研究了文本和对话生成,提了出一种基于强化学习框架的回复生成模型[6],对于同一个输入能够自动生成多个不同的回复;一种跨语言神经网络置信跟踪框架XL-NBT[7]在实现跨语种对话系统方面有重要的实际应用潜力(比如多语种自动客服)。此外,我们还为自动回复的多样性对条件变分自编码机进行了改进[8]。

基于强化学习的回复生成模型

值得一提的是我们将中国古典文化与现代技术的结合方面的探索。我们在 2018 年春节期间推出了腾讯 AI 春联,可根据用户提供的两个汉字生成一副春联。我们还探索了创造机器诗人的问题,提出一种基于对抗条件变分自编码器的诗歌生成方法(CVAE-D)[9],在主旨一致性和用词的新颖性上取得了不错的进展。

展望未来

近三年时间里,腾讯AI Lab相继成立了深圳及美国西雅图实验室,目前团队有70多名顶尖AI科学家及300多位经验丰富的工程师,专注四大研究方向。

产业落地上,AI Lab将与新成立的“腾讯Robotics X”机器人实验室担当前沿技术双基础部门,深耕产业,拥抱消费及产业互联网,做好技术标配。

前路漫漫,道阻且长,我们将继续前行,以科技点亮人文之光。


论文链接:

机器学习

[1] 基于数据分布迁移的超参优化算法

https://arxiv.org/pdf/1810.06305.pdf

[2] 学习框架L2MT

https://arxiv.org/abs/1805.07541

[3] 用学习迁移实现迁移学习的方法 L2T

https://ai.tencent.com/ailab/media/publications/icml/148_Transfer_Learning_via_Learning_to_Transfer.pdf

[4] 自适应于不同环境、不同任务的合成策略

https://papers.nips.cc/paper/7393-synthesize-policies-for-transfer-and-adaptation-across-tasks-and-environments

[5] POfD

https://ai.tencent.com/ailab/media/publications/icml/152_Policy_Optimization_with_Demonstrations.pdf

[6] 完全去中心化多智能体强化学习

https://arxiv.org/abs/1802.08757

计算机视觉

[1] 3D 实时定位

https://arxiv.org/abs/1810.05456

[2] 跟踪和分割视频中的物体

https://arxiv.org/abs/1803.09453

[3] 视频描述生成任务新方法

https://arxiv.org/abs/1803.11438

[4] 视频重定位

https://arxiv.org/abs/1808.01575

[5] TVNet

https://arxiv.org/abs/1804.00413

[6] 自动生成延时摄影视频

https://arxiv.org/abs/1709.07592

[7] 多阶段动态生成对抗网络(MD-GAN)

https://arxiv.org/abs/1709.07592

语音处理

[1] 语音唤醒模型

https://www.isca-speech.org/archive/Interspeech_2018/pdfs/1668.pdf

[2] 基于 Inception-ResNet 的声纹识别系统框架

https://www.isca-speech.org/archive/Interspeech_2018/pdfs/1769.pdf

[3] 多说话人场景

https://ai.tencent.com/ailab/media/publications/MonauralMulti-TalkerSpeechRecognitionwithAttentionMechanismand_GatedConvolutionalNetworks._pdf.pdf

[4] 鸡尾酒会问题

https://link.springer.com/article/10.1631/FITEE.1700814

[5] 语调韵律变化

https://ai.tencent.com/ailab/media/publications/icassp/FEATURE_BASED_ADAPTATION_FOR_SPEAKING_STYLE_SYNTHESIS.pdf

[6] 说话风格迁移

https://www.isca-speech.org/archive/Interspeech_2018/pdfs/1991.pdf

自然语言处理

[1] 多层多头自注意力机制的改进

https://arxiv.org/abs/1810.10181

[2] 基于忠实度的训练框架

https://arxiv.org/abs/1811.08541

[3] 联合学习方法

https://arxiv.org/abs/1810.06195

[4] 翻译记忆融入

https://ai.tencent.com/ailab/nlp/papers/aaai2019_graph_translation.pdf

[5] AI辅助翻译产品TranSmart

http://transmart.qq.com/

[6] 基于强化学习框架的回复生成模型

https://ai.tencent.com/ailab/nlp/publications.html

[7] 跨语言神经网络置信跟踪框架 XL-NBT 

https://arxiv.org/pdf/1808.06244.pdf

[8] 对条件变分自编码机的改进

http://aclweb.org/anthology/D18-1354

[9] 基于对抗条件变分自编码器的诗歌生成方法(CVAE-D)

http://aclweb.org/anthology/D18-1423

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-01-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 腾讯技术工程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
ICML进行时|一文看尽获奖论文及Google、Facebook、微软、腾讯的最新科研成果
【导读】 ICML ( International Conference on Machine Learning),国际机器学习大会如今已发展为由国际机器学习学会(IMLS)主办的年度机器学习国际顶级会议。今天,第35届 ICML 大会在瑞典的斯德哥尔摩正式召开,与大家一同分享这一领域在这一年里的突破。ICML 2018 共有 2473 篇论文投稿,共有 621 篇论文杀出重围入选获奖名单,接受率接近25%。其中 Google 强势领跑,Deep Mind 、FaceBook和微软也是精彩纷呈;而在高校中 UC Berkeley 和 Stanford 、CMU 以近 30 篇荣登 Top 榜。
用户1737318
2018/07/23
5490
ICML进行时|一文看尽获奖论文及Google、Facebook、微软、腾讯的最新科研成果
ICML 2018 | 腾讯AI Lab详解16篇入选论文
导读:7月10日至15日,第 35 届国际机器学习会议(ICML 2018)将在瑞典斯德哥尔摩举行。ICML是机器学习领域最顶级的学术会议,今年共收到2473篇投递论文,比去年的1676篇提高47.6%,增幅显著。最终入围论文共621篇,接收率25%,与去年26%持平。 这是腾讯AI Lab第二次参与这一顶级会议,共有16篇论文入选,去年则入选4篇,均位居国内企业前列。我们将在下文中分三类介绍这些文章——新模型与新框架、分布式与去中心化、及机器学习优化方法与理论研究。有的研究具有多重贡献,并不严格按照研究
腾讯技术工程官方号
2018/07/10
11.1K0
2018 年最值得期待的学术进展——致人工智能研究者们的年终总结
本文探讨了人工智能研究、应用和前景,特别关注了深度学习、强化学习、贝叶斯方法、多模态学习、自然语言处理等领域。作者预测,在2018年,AI将在各个领域取得突破性进展,包括自动驾驶、医疗诊断、机器翻译等方面。同时,作者也指出了AI在安全、隐私、解释性等方面的挑战。
企鹅号小编
2018/01/04
7500
2018 年最值得期待的学术进展——致人工智能研究者们的年终总结
2018 AI 研究趋势
本文介绍了神经网络在计算机视觉领域的应用,包括卷积神经网络、生成对抗网络、循环神经网络等。文章还讨论了训练数据集的重要性、模型的可解释性以及神经网络在医疗、自动驾驶等领域的应用。最后,文章提醒读者,虽然神经网络具有强大的拟合能力,但它们也有许多挑战,如过拟合、训练数据集偏差等。
企鹅号小编
2018/01/04
1.3K0
2018 AI 研究趋势
顶会见闻系列:从 NeurIPS 2018 看 AI 进展、观点及 2019 年趋势预测
NeurIPS 汇聚了人工智能和深层学习领域的杰出人才,近年来随着名气的上升,门票一度比 Taylor Swift 的演唱会还难买(更多内容回看《听说 NIPS 2018 门票十分钟卖光,机器学习圈子炸了锅》)。该会议主要聚焦于深度学习领域。深度学习是使用多层互联的人工神经网络对高维数据进行建模的过程,其对于图像分类、语音识别、自动驾驶汽车、面部识别,甚至手机的拼写自动纠正功能等方面的突破具有关键作用。由于深度学习已经成为近来人工智能进展的核心部分,NeurIPS 可以被视作更大的人工智能生态系统的标志性会议。
AI科技评论
2019/11/01
6470
顶会见闻系列:从 NeurIPS 2018 看 AI 进展、观点及 2019 年趋势预测
NIPS2018 | 腾讯AI Lab入选20篇论文,含2篇Spotlight
被誉为神经计算和机器学习领域两大顶级会议之一的NIPS于近日揭晓收录论文名单,此次为第32届会议,将于 12 月 3 日至 8 日在加拿大蒙特利尔举办。 腾讯AI Lab第三次参加NIPS,共有20篇论文入选,其中2篇被选为亮点论文(Spotlight),涵盖迁移学习、模仿学习、半监督学习等多个研究主题,去年我们入选论文8篇,含1篇口头报告(Oral)。 此外,在今年的多个顶级学术会议中,腾讯AI Lab也入选多篇论文,位居国内企业前列,包括计算机视觉领域顶会CVPR(21篇)和ECCV(19篇)、机
腾讯技术工程官方号
2018/10/17
13.9K0
NIPS2018 | 腾讯AI Lab入选20篇论文,含2篇Spotlight
【研究院】中国最强的AI Lab,是腾讯AI Lab吗?
腾讯AI Lab是腾讯企业级人工智能实验室,于2016年4月在深圳成立,目前其在中国和美国有70位世界级科学家及300余位经验丰富的应用工程师。
用户1508658
2019/07/26
5.6K0
【研究院】中国最强的AI Lab,是腾讯AI Lab吗?
新年快乐!这是份值得收藏的2017年AI与深度学习要点大全
若朴 夏乙 编译自 WILDML 量子位 出品 | 公众号 QbitAI 2017已经正式离我们远去。 过去的一年里,有很多值得梳理记录的内容。博客WILDML的作者、曾在Google Brain做了一年Resident的Denny Britz,就把他眼中的2017年AI和深度学习的大事,进行了一番梳理汇总。 量子位进行概要摘录如下,详情可前往原文查看,地址:http://www.wildml.com/2017/12/ai-and-deep-learning-in-2017-a-year-in-review
量子位
2018/03/22
6250
新年快乐!这是份值得收藏的2017年AI与深度学习要点大全
【ACL 2019】腾讯AI Lab解读三大前沿方向及20篇入选论文
本文将通过介绍入选NLP领域顶级学术会议 ACL 的论文,解读腾讯 AI Lab 的重点研究方向:自然语言理解、对话系统和文本生成,以及机器翻译等。
zenRRan
2019/08/19
1.1K0
【ACL 2019】腾讯AI Lab解读三大前沿方向及20篇入选论文
2018年国外主要实验室和科研团队成果和动向
Geoffrey Hinton,被称为“神经网络之父”、“深度学习鼻祖”,他曾获得爱丁堡大学人工智能的博士学位,并且为多伦多大学的特聘教授。在2012年,Hinton还获得了加拿大基廉奖(Killam Prizes,有“加拿大诺贝尔奖”之称的国家最高科学奖)。2013年,Hinton 加入谷歌并带领一个AI团队,他将神经网络带入到研究与应用的热潮,将“深度学习”从边缘课题变成了谷歌等互联网巨头仰赖的核心技术,并将BP算法应用到神经网络与深度学习。
zenRRan
2019/03/06
1.2K0
2018年国外主要实验室和科研团队成果和动向
五大顶尖研究院的116篇ICLR 2018录用论文,七大趋势全解读
AI 科技评论按:时间过得好快,Yann LeCun 仿佛刚刚在 Twitter 上感慨 ICLR 2018 的参会人数比 2017 年再次翻倍,而现在 ICLR 2018 已经于加拿大当地时间 5 月 3 日结束了。
AI科技评论
2018/07/27
5610
五大顶尖研究院的116篇ICLR 2018录用论文,七大趋势全解读
学界 | 腾讯 AI Lab 解读16篇 EMNLP 2018 入选论文
EMNLP 是自然语言处理领域的顶级会议,它的全称是Conference on Empirical Methods in Natural Language Processing(自然语言处理中的经验方法会议),由国际语言学会(ACL)的SIGDAT小组主办,今年10月31日-11月4日将在比利时布鲁塞尔举行。
AI科技评论
2018/11/22
6640
最新最简易的迁移学习方法,人员再识别新模型 | AI一周学术
呜啦啦啦啦啦啦啦大家好,本周的AI Scholar Weekly栏目又和大家见面啦!
大数据文摘
2019/03/18
4860
最新最简易的迁移学习方法,人员再识别新模型 | AI一周学术
本季「必追」!16个社区热议工作及10篇国际AI顶会Best Papers一文回顾
2022 年一季度的尾声,在这个季度中,你是否担忧自己错过了哪些重要的技术工作?抑或想要检验下自己是不是在这一季度又有了哪些基础知识的增长? 本篇是机器之心「虎卷er行动 · 春卷er」的第一卷,旨在为老伙计们汇总并逐一盘点2022年开春以来机器之心编辑部报道发现的社区热议的技术工作,并回顾近期举办的国际AI顶会的最佳论文。 本卷资料收录 2022春季热议工作:16项 2022春季国际顶会最佳论文:10篇 2022 春季 · 机器之心报道社区热议工作 热议工作1:阿里达摩院语音实验室提出了一种具有线性
机器之心
2022/03/14
1.1K0
一文读完GitHub30+篇顶级机器学习论文(附摘要和论文下载地址)
作者:常佩琦 弗格森 【新智元导读】 今天介绍Github上的开源项目,专门用于更新最新的研究突破,具体说来,就是什么算法在哪一个数据集上取得了state-of-the-art 的成果,包括语音、计算机视觉和NLP、迁移学习、强化学习。在这里,你可以读懂2017机器学习领域究竟在哪些方向上取得了突破,各大前沿机构和学术大牛们在哪些方向上发力。比如,Hinton掀起深度学习革命的Capsule 网络、再到谷歌的“一个模型学习所有”“Attention is all you need”以及Facebook在机器
新智元
2018/03/21
3.9K0
一文读完GitHub30+篇顶级机器学习论文(附摘要和论文下载地址)
王者荣耀开源环境上榜!九月AI研究GitHub排行来了,「star多」才叫好论文
有网友根据论文在GitHub仓库获得的stars,对论文进行了一次排行,其中包括王者荣耀竞技场、大规模中文科学文献库等。
新智元
2023/01/06
1.1K0
王者荣耀开源环境上榜!九月AI研究GitHub排行来了,「star多」才叫好论文
谷歌大脑2017总结(Jeff Dean执笔,干货满满,值得收藏)
李杉 维金 编译自 Google Blog 量子位 出品 | 公众号 QbitAI 谷歌AI Senior Fellow、谷歌大脑负责人Jeff Dean,按照惯例,今天开始发布2017年度的谷歌大脑
量子位
2018/03/22
7590
谷歌大脑2017总结(Jeff Dean执笔,干货满满,值得收藏)
一文概述 2018 年深度学习 NLP 十大创新思路
AI 科技评论按:Sebastian Ruder 是一位 NLP 方向的博士生、研究科学家,目前供职于一家做 NLP 相关服务的爱尔兰公司 AYLIEN,同时,他也是一位活跃的博客作者,发表了多篇机器学习、NLP 和深度学习相关的文章。最近,他基于十几篇经典论文盘点了 2018 年 NLP 领域十个令人激动并具有影响力的想法,并将文章发布在 Facebook 上。AI 科技评论编译如下:
AI研习社
2019/01/09
4180
一文看尽谷歌AI全年重大研究突破,Jeff Dean执笔,全程干货
从重要AI技术应用突破讲起,到展望2019结束。Jeff Dean总结了14个大方面的AI成果,并透露全年AI论文发表数达608篇。
量子位
2019/04/24
9060
一文看尽谷歌AI全年重大研究突破,Jeff Dean执笔,全程干货
腾讯AI Lab两大算法刷新人脸识别与检测纪录,秉承「基础研究+落地应用」之路
AI 科技评论按:12 月 18 日,腾讯 AI Lab 宣布,其研发的人脸算法 Face R-FCN 和 Face CNN 分别在人脸检测平台 WIDER FACE 与人脸识别平台 MegaFace 的多项测评中斩获冠军。获悉这一消息后,AI 科技评论与腾讯 AI Lab 计算机视觉中心总监刘威博士进行了交流。 Face R-FCN 算法为针对人脸检测问题而设计,而 Face CNN 则着眼于解决人脸识别问题。据刘威博士介绍,目前 Face R-FCN 的部分技术细节已在 arXiv 上公布,Face C
AI科技评论
2018/03/14
1K0
腾讯AI Lab两大算法刷新人脸识别与检测纪录,秉承「基础研究+落地应用」之路
推荐阅读
ICML进行时|一文看尽获奖论文及Google、Facebook、微软、腾讯的最新科研成果
5490
ICML 2018 | 腾讯AI Lab详解16篇入选论文
11.1K0
2018 年最值得期待的学术进展——致人工智能研究者们的年终总结
7500
2018 AI 研究趋势
1.3K0
顶会见闻系列:从 NeurIPS 2018 看 AI 进展、观点及 2019 年趋势预测
6470
NIPS2018 | 腾讯AI Lab入选20篇论文,含2篇Spotlight
13.9K0
【研究院】中国最强的AI Lab,是腾讯AI Lab吗?
5.6K0
新年快乐!这是份值得收藏的2017年AI与深度学习要点大全
6250
【ACL 2019】腾讯AI Lab解读三大前沿方向及20篇入选论文
1.1K0
2018年国外主要实验室和科研团队成果和动向
1.2K0
五大顶尖研究院的116篇ICLR 2018录用论文,七大趋势全解读
5610
学界 | 腾讯 AI Lab 解读16篇 EMNLP 2018 入选论文
6640
最新最简易的迁移学习方法,人员再识别新模型 | AI一周学术
4860
本季「必追」!16个社区热议工作及10篇国际AI顶会Best Papers一文回顾
1.1K0
一文读完GitHub30+篇顶级机器学习论文(附摘要和论文下载地址)
3.9K0
王者荣耀开源环境上榜!九月AI研究GitHub排行来了,「star多」才叫好论文
1.1K0
谷歌大脑2017总结(Jeff Dean执笔,干货满满,值得收藏)
7590
一文概述 2018 年深度学习 NLP 十大创新思路
4180
一文看尽谷歌AI全年重大研究突破,Jeff Dean执笔,全程干货
9060
腾讯AI Lab两大算法刷新人脸识别与检测纪录,秉承「基础研究+落地应用」之路
1K0
相关推荐
ICML进行时|一文看尽获奖论文及Google、Facebook、微软、腾讯的最新科研成果
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档