首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Vcsel芯片和制作流程

Vcsel芯片和制作流程

作者头像
用户2760455
发布于 2022-11-15 01:30:19
发布于 2022-11-15 01:30:19
1.3K0
举报
文章被收录于专栏:芯片工艺技术芯片工艺技术

但凡说到激光器,人们必须提及Vcsel,也就是垂直腔面发射激光器:Vertical-Cavity Surface-Emitting Laser。

2017年苹果公司iPhone X采用vcsel作为3D感应技术,用于Proximity sensor和 Face ID模块,彻底把Vcsel炒热了。之后发现Vcsel在激光雷达LiDAR和气体检测等方面有很大的应用市场。市场预期2023年市场还会扩大10倍以上。同时随着光通讯数据中心的建设,Vcsel激光器作为980nm等短波长激光器的使用量也会激增。

Vcsel的应用场景

市场预期

全球主要Vcsel供应商

2. Vcsel的结构和原理

如上图,我们都知道LD作为侧发光的激光器,光源是从侧边出光面发射,而且需要在AR面镀增透膜、HR面做高反膜。而Vcsel的光是从P型或N型表面直接发射出来,有点像红光LED的结构。

芯片内部结构

Vcsel的光腔是采用有源区上方和下方的布拉格在外延工序沉淀而成。

TO封装后的Vcsel外形

我们以上图的Vcsel的制备过程为例说明:

1)通过MBE或Mocvd在砷化镓的基板上,交替生长GaAs和AlAs,交替生长层最终形成布拉格反射镜。GaAs和AlAs有这显著不同的折射率,但是他们二者的晶格常数基本相同,因此可以交替生长很多层而不产生位错,这也是为什么可以做出高反射率的镜面效果。

2) 接着生长几个量子阱有源区。

3)在上面生长一组P掺杂的GaAs/AlAs。

4)刻蚀出一个圆环形区域,从而定义出区域中直径几微米的激光器。

5)通常金属接触位于顶部环绕器件环上,通常要在顶部反射镜堆叠中,通过氧化暴露的AlAs层,使它形成氧化物不导电,从而形成电流光阑,以便漏斗电流仅流向器件的中心。

6)P型布拉格反射镜。

7)镀上面P电极

8)减薄到100um,镀N电极锗镍金。

3. Vcsel优缺点

优点:

1)不需要单独做反射镜,工艺简单。

2)阈值电流仅为0.1mA,器件体积小,电容小,适用于10Gbit/s的高速调制系统。

3)出光面是圆形,发射出来的光也是圆形,且垂直腔的高度也只有几微米,纵模只有一个,而且当腔体直径小于8um时,只有一个横模存在。十分方便出光耦合光线等。

4)温度特性好,无需制冷。

举例:德国Mergeoptics公司生产的850nm Vcsel激光器,谱宽0.2nm,平均发射功率-2.17dBm,消光比6.36dB,相对强度噪音-128dB/Hz。

缺点:

输出功率低,腔长短。 长波长的外延很难做,比如光通讯用的1310nm、1550nm。

GaAs的vcsel有一个AlAs氧化工艺,可以用来形成侧向电流限制,inp系的材料没有这个工艺,侧面电流限制做得不太好。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-07-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 芯片工艺技术 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
激光器芯片之垂直面发光芯片
侧发光激光芯片依靠衬底晶体的解离面作为谐振腔面,在大功率以及高新能要求的芯片上技术已经成熟,但是也存在很多不足,例如激光性能对腔面的要求较高,不能用常规的晶圆切割,比如砂轮刀片、激光切割等。
用户2760455
2022/06/08
7150
激光器芯片之垂直面发光芯片
用于3D摄像头的VCSEL技术
传统的光电转换技术一般采用 LED 等发光器件。这种发光器件多采用边缘发射,体积大,因此比较难以和半导体技术结合。20 世纪 90 年代垂直腔表面发射激光 VCSEL 技术成熟后,解决了发光器件和半导体技术结合的问题,因此迅速得到普及。
小白学视觉
2022/04/06
6240
用于3D摄像头的VCSEL技术
激光器光源和硅光器件研读
1、半导体光源作为第二代、第三代半导体材料体系,应用范围很广。根据不同的材料组分、光波段特点,分为很多种。
用户2760455
2022/06/06
1.1K0
激光器光源和硅光器件研读
惠普实验室的DWDM硅光平台
惠普实验室(Hewlett Packard Labs, 以下简称HPL)的硅光平台,主要特色是异质集成了InAs/GaAs材料,既实现了片上的量子点频率梳激光器,也实现了MOSCAP型调制器,其主要工艺步骤如下图所示,
光学小豆芽
2022/12/02
1.4K0
惠普实验室的DWDM硅光平台
更新边模抑制比
边模抑制比,英文名 Side-Mode Suppression Ratio 。主模强度和边模强度的最大值之比称为边模抑制比,是标志纵模性能的一个重要指标。
用户2760455
2022/06/08
2.1K0
更新边模抑制比
Vcsel芯片和边发射激光芯片
边发光激光芯片依靠衬底晶体的解离面作为谐振腔面,在大功率以及高性能要求的芯片上技术已经成熟,但是也存在很多不足,例如激光性能对腔面的要求较高,不能用常规的晶圆切割,比如砂轮刀片、激光切割等。在实际生产中测试环节又特别麻烦,需要解离成bar条才能继续测试,这很消耗切片的能力,而且非费劲切出来,结果测试还不一定过。
用户2760455
2022/06/08
2K0
Vcsel芯片和边发射激光芯片
DFB分布反馈激光器:设计和制作
法布里-珀罗激光器(FP-LD)是最常见、最普通的半导体激光器,它最大的特点是激光器的谐振腔由半导体材料的两个解理面构成。目前光纤通信上采用的FP-LD的制作技术已经相当成熟,普遍采用双异质结多量子阱有源层、载流子与光分别限制的结构。
用户2760455
2022/06/08
3.4K0
DFB分布反馈激光器:设计和制作
改善红光激光COD
COD全称灾变性光学镜面损伤,是激光器腔面区域吸收谐振腔内部较高的光输出后,导致腔面区域温度超过其材料的熔点,从而发生腔面熔化的一种灾变性破坏。
用户2760455
2022/06/08
7840
改善红光激光COD
单模和多模分别对应哪些波长?
在光纤通信行业工作了很长时间后,我们理所当然地认为多模对应850nm,或850nm,910nm波长。单模对应1260-1650nm波长,尤其是1310nm波段附近和1550nm波段附近的波长。
通往ICT之路
2024/04/09
3060
单模和多模分别对应哪些波长?
激光器芯片的三个关键问题
激光器芯片最近几年如火如荼,Vcsel的广泛应用,中国vcsel芯片越来越成熟,从封装应用到芯片工艺,再到外延生产。但是大功率的侧发光FP之类的激光器,国内还是不多,即便是芯片制作和封装水平均和国外无法比拟。大功率的外延牵涉设备和工艺太多,国内最近热点参与芯片工艺和封装。设计应用在国内是越来越成熟,大族激光、创鑫激光等等。那么芯片为啥那么难着呢,激光器芯片碰到三个关键问题:
用户2760455
2022/06/06
1.5K0
激光器芯片的三个关键问题
大功率半导体激光器
1962 年,美国科学家宣布成功研制出了第一代半导体激光器———GaAs 同质结构注入型半导体激光器。由于该结构的激光器受激发射的阈值电流密度非常高,需要 5 × 10^4 ~ 1 × 10^5 A/ cm2,因此它只能在液氮制冷下才能以低频脉冲状态工作。从此开始,半导体激光器的研制与开发利用成为人们关注的焦点。
用户2760455
2022/06/08
1.5K0
大功率半导体激光器
惠普实验室:大规模III-V/Si异质集成光子器件平台助力下一代光计算(一)
(原文链接:https://ieeexplore.ieee.org/document/10835188)
光芯
2025/04/08
2550
惠普实验室:大规模III-V/Si异质集成光子器件平台助力下一代光计算(一)
分布式反馈(DFB)激光器
DFB激光器Distributed Feedback (DFB) Lasers,为克服FP激光器Fabry-Perot Laser的缺点而生。
睐芯科技LightSense
2024/07/24
2920
Intel:300mm硅光平台异质集成抗反射量子点激光器
量子点激光器相比量子肼激光器具有更低的阈值电流密度、高温下更高的增益及更小的增益竞争,具备多波长激射能力,最重要的是QD Laser的线宽增强因子低,对光反馈的容忍度高(抗反射),可以实现去隔离器,显著降低封装和组装成本及复杂性。
光芯
2025/04/08
2050
Intel:300mm硅光平台异质集成抗反射量子点激光器
一款常见的脊型侧发光激光器芯片制作及测试
最近在思考年底专利的稿子,一直没有好的方案,公众号也长草多久,本着共同学习的方向,在芯片设计、芯片工艺、以及后端封装、应用上能有不同的收获。上一段时间遇到一个华南理工的师兄,美国博后回来在母校做老师,在光电行业也小有成果了。三句话不离他的老本行,他原先是做发光玻璃材料的,什么量子点、量子阱、纳米线、上转换、下转换。连他都认为光电子芯片未来可期,看来还需要继续努力了。
用户2760455
2022/06/08
8590
一款常见的脊型侧发光激光器芯片制作及测试
集成光路中的光栅
所谓光栅,就是通过一定的微加工手段,使得材料的折射率满足一定的分布,从而实现对光操控的一类光器件。典型的光栅结构,示意图如下,
光学小豆芽
2020/08/14
2.4K0
激光雷达Lidar里面的激光
雷达作为车辆避障的重要手段,现在已经从最初仅有超声波雷达发展到超声波雷达、毫米波雷达和激光雷达互补共存的阶段,激光雷达以其分辨率高的优势,迎来快速增长的时期,无人驾驶技术已是大势所趋,车载的激光雷达近几年出现爆发式增长的局面。
用户2760455
2022/06/08
7800
激光雷达Lidar里面的激光
Furukawa窄线宽可调谐激光器:相干光通信的核心技术突破与演进
原文链接:https://www.furukawa.co.jp/en/rd/review/fr056/fr56_04.pdf
光芯
2025/07/02
2270
Furukawa窄线宽可调谐激光器:相干光通信的核心技术突破与演进
一个硅基板上InGaN激光芯片的腔面制作方法
将InGaN基激光器直接生长在硅衬底材料上,为GaN基光电子器件与硅基光电子器件的有机集成提供了可能。另一方面,自1996年问世以来,InGaN基激光器在二十多年里得到了快速的发展,其应用范围遍及信息存储、照明、激光显示、可见光通信、海底通信以及生物医疗等领域。目前几乎所有的InGaN基激光器均是利用昂贵的自支撑GaN衬底进行制备,限制了其应用范围。硅衬底具有成本低、热导率高以及晶圆尺寸大等优点,如果能够在硅衬底上制备InGaN基激光器,将有效降低其生产成本,从而进一步推广其应用。
用户2760455
2022/06/08
7970
一个硅基板上InGaN激光芯片的腔面制作方法
3D视觉传感技术科普
深度传感镜头作为智能手机创新模式,苹果在最新版iPad Pro上搭载了D-ToF(直接飞行时间法)深度传感镜头,推动了3D视觉在消费场景的应用。
孙寅
2021/12/21
1.4K0
3D视觉传感技术科普
相关推荐
激光器芯片之垂直面发光芯片
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档