Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >319篇文献、41页综述文章讲述图神经网络用于医疗诊断的前世今生与未来

319篇文献、41页综述文章讲述图神经网络用于医疗诊断的前世今生与未来

作者头像
机器之心
发布于 2023-03-29 09:11:52
发布于 2023-03-29 09:11:52
2K0
举报
文章被收录于专栏:机器之心机器之心

ScienceAI编译

编辑:文龙

本文介绍图神经网络(GNN)用于医疗诊断和分析的一篇综述文章《Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future》。

随着数据驱动的机器学习研究的进步,探索如何利用机器学习来分析医疗数据变得至关重要。现有方法的一个主要限制是人体生理信息的数据结构通常是不规则的和无序的,很难将这些数据网格化为易于分析处理的格式。而图表神经网络通过边连接交互节点,并可以将时间关联或解剖结构赋值给边的权重,能够很好地利用生物系统中的隐式信息做出医疗诊断,引起了广泛关注。

本文介绍图神经网络(GNN)用于医疗诊断和分析的一篇综述文章《Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future》。该论文由澳大利亚 CSIRO 的 Data61 多名成员撰写,共调研了 319 篇论文,彻底审查了不同类型的图神经网络架构及其在医疗卫生中的应用,概述了现有技术的局限性并讨论了未来研究的潜在方向

医疗诊断是指确定患者患哪一种疾病、何种程度的过程。疾病诊断所需的信息是从患者的病史和各种医学成像数据中获得,包括功能性磁共振成像(fMRI)、磁共振成像(MRI)、电子计算机断层扫描(CT)、超声波(US)成像和X射线(X-ray)成像,以及其他诊断工具如电切割图(EEG)。

然而,诊断过程不仅耗时长久,还容易产生和患者真实情况有差异的主观解释。借助计算机辅助诊断系统,临床专家已经有所受益。另外,自动化在医疗卫生服务和医生有限的情况下也十分有益,可以提高医疗卫生系统的质量、降低成本。

GNN 是一种处理由顶点和边构成的图结构信息的神经网络,近几年已成为机器学习领域的热点。由于化学、生物学、医疗卫生等学科的大部分信息需要复杂的数据结构,并不适用于矢量表示。而图结构的本质是捕获实体之间的关系,可以对它们之间的关系进行编码,因此在这些应用中非常有用

在医疗卫生中,图相关的机器学习方法广泛应用于脑活动分析、脑表面表示、解剖结构的分割和标记、多模态医学数据分析等领域。因此,需要特别注意 GNN 在非结构(无序)和结构(有序)中的泛化。除此以外,此类方法仍然稀缺,而且它们尚且不能完全解决许多具有挑战性的医学问题。

文章主要贡献有以下几个方面:

  1. 我们确定了传统深度学习在应用于医学数据分析时面临的许多挑战,并强调了图神经网络在克服这些挑战方面的贡献。
  2. 我们介绍和讨论为医学诊断提出的各种图神经网络框架及其具体应用。我们涵盖了使用图网络结合深度学习技术进行生物医学成像应用的工作。
  3. 我们总结了基于图的深度学习当前面临的挑战,并根据当前观察到的趋势和局限性提出医疗卫生的未来方向。

图神经网络

本章简要描述了该领域中最常见的基于图的深度学习模型,包括 GCN 及其变体,具有时间依赖性和注意结构。

图可以表示为 G = (V, E, W) 。其中 V 表示 N 个节点的集合,|V| = N ;E 表示连接这些节点的边集;W 是邻接矩阵,描述了任意两个节点之间的连接权重。确定 W 中每项的值的常用方法包括基于 Pearson 相关的图、最近邻 (KNN) 规则方法和基于距离的图。

图卷积神经网络

图卷积网络 (GCN) 扩展了图域信号处理理论,使 CNN 的表示学习能力能够应用于不规则的图数据。图卷积操作旨在通过聚合其自身特征及其相邻顶点的特征来生成顶点的表示。GCN 生成的关系感知表示极大地增强了 CNN 特征的判别能力,并且模型的可解释性可以更好地帮助临床医生

基于图的分类任务的第一步是将原始数据转换为图表示,然后用 GCN 学习图的不同节点之间的内在关系。GCN 是一种结合了 GNN 和 CNN 的深度学习方法,框架如图所示。图池化层将来自多个顶点的信息池化到一个顶点,以减小图尺寸并扩大图信号滤波器的感受野;最后一个图卷积层的特征向量被连接成一个单一的特征向量,该特征向量被馈送到一个全连接层以获得分类结果。

GCN 框架(来源:论文)

GCN 可以分为:基于频谱的(spectral-based)和基于空间的(spatial-based)。Spectral-base GCN 依赖于频谱卷积神经网络的概念,该概念建立在图傅立叶变换和图的归一化拉普拉斯矩阵之上。Spatial-based GCN 定义了基于图节点之间存在的空间关系的图卷积操作。

其他变体还包括:具有动态权重的 GCN 、具有广泛学习系统的动态 GCN 、边权重、自适应 GCN 、图域适应、基于同构图的模型、协同 GCN 、简单的图卷积网络、基于图的分割模型(例如, 3D Unet-graph 、Spherical Unet)。

时态图网络

GNN 主要是为不随时间变化的静态图开发的。然而,现实世界中图大多是动态的,会随着时间的推移而演变,例如,使用 fMRI 记录的大脑活动。这种称为时态图的 GNN 变体旨在从图的空间和时间依赖性中学习隐藏模式。这些模型可以分为两种主要类型:

  • 基于 RNN 的方法:通过使用图卷积来过滤输入和传递给循环单元的隐藏状态来捕获时空依赖性。典型的模型有 Diffusion Convolutional Recurrent Neural Networks (DCRNN)和 Graph Convolutional Recurrent Network (GCRN)。
  • 基于 CNN 的方法:以非递归方式处理时空图。使用时间连接来扩展静态图结构,以便他们可以在扩展图上应用传统的 GNN。典型的模型有 Spatio-temporal Graph Convolutional Network (STGCN)、 Temporal Graph Convolutional Network(TGCN)。

其他变体还包括:GCN-LSTM 、基于复杂网络的顺序 GCN 、基于几何深度学习的方法、时间自适应 GCN 、具有锁相值的 GCN 。

STGCN 架构。(来源:论文)

具有注意力机制的图网络

在实际应用中,图结构数据可能既庞大又嘈杂,并且不是所有信息都同等重要。因此,注意力机制可以引导网络专注于最相关的部分,抑制无关信息特征,降低计算成本并提高准确性。注意力机制可以分为两种主要类型:

  • 软性注意力(Soft-attention)机制:端到端的方法,通常放置在编码器和解码器之间,可以通过基于梯度的方法学习。全注意力架构可以保留原始信号的细节,并选择最关键的信息。
  • 自注意力(Self- attention)机制:完全依赖注意力机制也可以实现可比的性能,受此启发,图注意力网络(GAT)通过修改卷积操作将注意力机制融入到传播中。在传统的 GCN 中,权重通常取决于相邻节点,而 GAT 中的权重是通过基于节点特征的自注意力机制计算得来的。

其他变体还包括:特征表示的注意力机制、多模态融合的注意力机制、加权 GAT 、边加权 GAT 、基于注意力的 ST-GCN 、交叉模态的 GAT 。

用于医学诊断分析的 GNN 案例研究

本章主要总结了文献综述中的所有案例。

大脑中的功能连接分析

功能性磁共振成像(fMRI)、静息态功能性磁共振成像(rs-fMRI)、任务态功能性磁共振成像(t-fMRI)是将受试者分为患者或健康对照组的主要数据来源。具体包括:自闭症谱系障碍(ASD)、精神分裂症(SZ)、注意力缺陷多动障碍(ADHD)、重度抑郁症 (MDD)、双相情感障碍(BD)等精神疾病。

依据节点的不同,可以将用于分析 fMRI 成像的 GNN 模型大致分为两类:(i)个体图:节点是大脑的不同区域,边是随时间序列观察的这些区域之间的功能相关性;(ii) 群体图:每个节点代表一个具有相应大脑功能连接数据的受试者,边为受试者表型特征(年龄、性别等)之间的相似性。

个体图用于分析 fMRI 成像的 GNN 模型。(来源:论文)

群体图用于分析 fMRI 成像的 GNN 模型。(来源:论文)

用图卷积解码大脑功能区域。(来源:论文)

除此以外, GNN 还被用于确定与特定认知刺激相关的大脑区域之间的关系,以及生成捕捉大脑功能和结构变化的超高分辨率 MRI 图像。

基于电波图的分析

脑电图(EEG)被广泛应用于情感心理状态、情感认同等情感分析,以及癫痫等神经系统疾病诊断;心电图(ECG)则被用于识别心脏异常。除此以外, GNN 还可以被用于睡眠阶段的分类和脑机交互研究中的监测。

从 EEG 信号中提取特征构建图表示以对心理状态进行分类。(来源:论文)

具有 Attention 机制的 GNN-LSTM 用于 EEG 信号的分析。(来源:论文)

解剖结构分析(分类和预测)

基于 MRI 数据, GNN 模型可以对阿兹海默和帕金森疾病进行分类;基于 CT 图片, GNN 模型可以对结核病、 COVID-19 进行分类;基于 X 光片, GNN 模型可以对胸部疾病、乳腺癌、肾病进行分类;基于扩散磁共振成像(DMRI)数据, GNN 模型可以对大脑数据做出预测。

基于共同学习标签的 GCN 框架,以探讨具有语义信息指导的潜在异常,包括病理共同发生和相互依赖性。(来源:论文)

解剖结构分析(分割)

在不同的医学图像分割和标记方法中,基于图网络的方法显示出有前景的临床应用结果。主要用于血管分割(冠状动脉、肺动脉和静脉、视网膜血管、颅内动脉、头部和颈部血管)和器官分割(脑皮质、呼吸道、脑组织、眼睛、胰腺和脾脏、前列腺、淋巴结)两大类。

用于脑皮质分割的球形U-NET架构。(来源:论文)

研究挑战和未来方向

本章强调了当前用于医学诊断的 GNN 的局限性,并提供了一些文献中未涵盖的 GNN 在医疗卫生中使用的研究方向和未来的可能性,例如行为分析。

七个主要挑战

  1. 图表示和估计:大多数研究中的图结构都是手动设计的,缺乏统一的结构知识;不同的属性和任务需要不同的模型架构,图结构估计就是为了找到合适的图,以将数据表示为研究所需的输入形式。
  2. 动态图和时间图:许多现实世界的医学应用是动态的,这意味着图的节点、边和权重可以随时间变化。因此,静态图在时间场景中工作表现不佳。
  3. 图模型的复杂性和训练效率:GCN 与它的变体有着相当大的复杂性,这对于不太具有挑战的应用程序来说可能是苛刻且不必要的,需要更简单的图神经网络模型。
  4. 可解释性和可解读性:缺乏透明度被认为是 AI 在临床实践中采用的主要障碍之一,迈向值得信赖的 AI 的一步是可解释 AI 的发展。
  5. 图模型的泛化:难以使用异构数据构建准确和强大的学习模型,由于患者隐私和临床数据管理要求,真正集中的开源医疗大数据集团用于深度学习十分罕见,这就需要模型具有很强的泛化能力。
  6. 数据标注效率和训练范式:由于深度学习利用高度数据驱动的分层特征表示,医疗应用有几个关键挑战,包括注释稀缺、复杂注释和弱注释,以及标签的稀疏性。
  7. 不确定性的量化:在医学应用中,不确定性可以分为偶然不确定性和认知不确定性:偶然不确定性由数据中的噪声产生;认知不确定性则可能源于模型的不完整。 

三个可能的方向

1.面部分析:临床专家依靠某些面部特征和症状进行辅助医学诊断,并且已引入计算机视觉来提供面部特征的自动和客观评估。然而, CNN 主要关注面部各区域,没有考虑面部运动之间隐藏的相互关系,这可以用 GCN 捕获。因此,在临床环境中使用 GNN 创建互补的图表示和关系推理方法还有待探索。

潜在应用:术后疼痛管理、血管脉搏监测、面瘫评估,以及几种神经和精神疾病,包括癫痫、多动症、自闭症、双相情感障碍和精神分裂症。

通过 GCN 对面部动作单元进行建模。(来源:论文)

2.人体姿势定位:人体姿势捕捉重要的健康相关指标,在评估癫痫、睡眠监测和手术恢复等医疗状况方面具有潜在价值。由于人体姿势估计与图形结构有关,因此 GCN 可以以灵活的方式处理骨架数据。

潜在应用:病床上姿势估计,以跟踪手术和疾病恢复以及其他睡眠障碍(如呼吸暂停、压疮和腕管综合征)造成的损伤。

采用图回归来学习用于变化的时空图作为 GCN 的输入,用于动作特征学习。(来源:论文)

3.基于姿势的动作识别和行为分析:运动评估和监测是临床观察过程中的有力工具,并有助于诊断运动和精神障碍。然而,如前所述,骨架本身是图的形式。基于图的人体骨骼表示有一个显着的特点:i)关节和骨骼信息是互补的,将它们结合起来可以进一步改进基于骨骼的动作识别;ii) 时间连续性不仅存在于关节之间,也存在于身体结构中;iii) 空间域和时间域之间存在共存关系;iv) 骨架序列的时间动态也包含识别任务的重要信息。

潜在应用:

  • 运动障碍:癫痫、帕金森、阿尔茨海默病、中风、震颤、亨廷顿舞蹈症和神经发育障碍。
  • 精神障碍:痴呆症、精神分裂症、重度抑郁症、躁郁症和自闭症谱系。
  • 其他情况:呼吸障碍、住院患者跌倒预测、诸如躁动、抑郁、谵妄、异常活动或评估医院环境中的人际交往等健康状况。

身体部位之间的物理关系用于构造图卷积的邻接矩阵。(来源:论文)

论文链接:https://arxiv.org/abs/2105.13137

WAIC AI开发者论坛:后深度学习的AI时代

7月8日—10日,AI 开发者论坛将通过三大核心模块:AI开发者论坛WAIC· 开发者黑客松WAIC· 云帆奖展示本年度人工智能领域最前沿的研究方向和技术成果。

7月10日,AI开发者论坛邀请到多位业界大咖带来精彩分享:

  • 阿里巴巴副总裁、达摩院语言技术实验室负责人司罗
  • 上海交通大学特聘教授陈海波
  • 百度研究院量子计算研究所所长段润尧
  • RISC-V 国际开源 (RIOS) 实验室执行主任谭章熹
  • 类脑芯片研究领军人物 Giacomo Indiveri
  • 普林斯顿大学计算机科学系教授Yroam Singer

本次论坛主题涵盖大规模语言智能、SysML(机器学习系统)、多模态机器学习及大规模自动生成技术、RISC-V技术及生态、AI 原生计算机系统、量子人工智能、GPGPU等热门话题,满足 AI 开发者多层次的学习需求。

在精彩的分享外,我们还准备了RTX 3060 显卡、HHKB键盘、Air Tag、人工智能专业书籍、桌搭鼠标垫,现场签到即可参与抽取。

识别下方二维码,立即报名。

© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:content@jiqizhixin.com

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-06-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
图神经网络 | BrainGNN: 用于功能磁共振成像分析的可解释性脑图神经网络
GNN是Graph Neural Network的简称,是用于学习包含大量连接的图的联结主义模型。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统甚至生命科学等各个领域得到了越来越广泛的应用。GNN在对图节点之间依赖关系进行建模的强大功能,使得与图分析相关的研究领域取得了突破。当信息在图的节点之间传播时GNN会捕捉到图的独立性。
脑机接口社区
2022/08/26
2.1K0
图神经网络 | BrainGNN: 用于功能磁共振成像分析的可解释性脑图神经网络
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
随着机器学习技术的迅猛发展,越来越多的数据类型得到了广泛的研究和应用。其中,图数据由于其能够表示复杂关系和结构的特点,逐渐成为研究的热点。然而,传统的机器学习和神经网络方法在处理图数据时往往力不从心,因为它们主要针对的是结构化数据(如表格数据)或序列数据(如文本和时间序列)。因此,如何高效地处理和分析图数据成为了一个重要的研究课题。
空白诗
2024/06/18
1.5K0
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
​万字综述 | 图神经网络在时间序列中的应用:预测、分类、填补和异常检测
时间序列是记录动态系统测量值的主要数据类型,由物理传感器和在线过程(虚拟传感器)大量生成。因此,时间序列分析对于揭示可用数据中隐含的信息财富至关重要。随着图神经网络(GNNs)的最新进展,基于GNN的时间序列分析方法大幅增加。这些方法可以明确地建模时序和变量间的关系,而传统的和其他基于深度神经网络的方法则难以做到。在这项调查中,我们对图神经网络在时间序列分析中的应用进行了全面回顾(GNN4TS),涵盖了四个基本维度:预测、分类、异常检测和填补。我们的目标是指导设计师和从业者了解、构建应用程序,并推进GNN4TS的研究。首先,我们提供了一个全面的面向任务的GNN4TS分类法。然后,我们介绍和讨论代表性研究成果,并介绍GNN4TS的主流应用。最后,我们全面讨论了潜在的未来研究方向。这项调查首次汇集了大量关于基于GNN的时间序列研究的知识,突出了图神经网络在时间序列分析中的基础、实际应用和机遇。
Houye
2024/04/11
7.3K0
​万字综述 | 图神经网络在时间序列中的应用:预测、分类、填补和异常检测
图神经网络入门(三)GAT图注意力网络
注意机制已成功用于许多基于序列的任务,例如机器翻译,机器阅读等等。与GCN平等对待节点的所有邻居相比,注意力机制可以为每个邻居分配不同的注意力得分,从而识别出更重要的邻居。将注意力机制纳入图谱神经网络的传播步骤是很直观的。图注意力网络也可以看作是图卷积网络家族中的一种方法。
Houye
2020/05/21
3.7K0
图神经网络在生物医药领域的12项研究综述,附资源下载
2020年,图机器学习(Graph ML)已经成为机器学习(ML)领域中的一个备受关注的焦点研究方向。其中,图神经网络(GNN)是一类用于处理图域信息的神经网络,由于有较好的性能和可解释性,现已被广泛应用到各个领域。
机器之心
2021/02/23
2.8K0
图神经网络在生物医药领域的12项研究综述,附资源下载
BP综述:自闭症中基于功能连接体的预测模型
自闭症是一种异质性的神经发育疾病,基于功能磁共振成像的研究有助于推进我们对其对大脑网络活动影响的理解。我们回顾了使用功能连接和症状的测量的预测建模如何帮助揭示对这种情况的关键见解。我们讨论了不同的预测框架如何进一步加深我们对复杂自闭症症状学基础的基于大脑特征的理解,并考虑预测模型如何在临床环境中使用。在整个研究过程中,我们强调了研究解释的一些方面,如数据衰减和抽样偏差,这些都需要在这种情况下进行考虑。最后,我们提出了自闭症预测建模令人兴奋的未来方向。
悦影科技
2022/12/07
6220
2022年最新《图神经网络综述》
近几年来,将深度学习应用到处理和图结构数据相关的任务中越来越受到人们的关注.图神经 网络的出现使其在上述任务中取得了重大突破,比如在社交网络、自然语言处理、计算机视觉甚至生命 科学等领域得到了非常广泛的应用.图神经网络可以把实际问题看作图中节点之间的连接和消息传播 问题,对节点之间的依赖关系进行建模,从而能够很好地处理图结构数据.鉴于此,系统综述了图神经网络模型以及应用.首先从谱域、空间域和池化3方面对图卷积神经网络进行了阐述.然后,描述了基于注意 力机制和自编码器的图神经网络模型,并补充了一些其他方法实现的图神经网络.其次,总结了针对图 神经网络能不能做大做深等问题的讨论分析.进而,概括了图神经网络的4个框架.还详细说明了在图 神经网络在自然语言处理、计算机视觉等方面的应用.最后,对图神经网络未来的研究进行了展望和总 结.相较于已有的图神经网络综述文章,详细阐述了谱理论知识,并对基于谱域的图卷积神经网络体系 进行全面总结.同时,给出了针对空间域图卷积神经网络效率低的改进模型这一新的分类标准.并总结 了针对图神经网络表达能力、理论保障等的讨论分析,增加了新的框架模型.在应用部分,阐述了图神经 网络的最新应用.
张小磊
2022/02/28
2K0
2022年最新《图神经网络综述》
【GNN】图神经网络综述
本篇文章是对论文“Wu Z , Pan S , Chen F , et al. A Comprehensive Survey on Graph Neural Networks[J]. 2019.“”的翻译与笔记
zenRRan
2020/02/18
1.8K0
【综述专栏】图神经网络综述
在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优秀的综述文章,开辟“综述专栏”,敬请关注。
马上科普尚尚
2021/03/17
9690
【综述专栏】图神经网络综述
知识图谱嵌入与图神经网络的深度融合
在过去的十年里,知识图谱(Knowledge Graph, KG)作为结构化的知识表示方式,已经在多个领域得到了广泛应用。它通过图结构来表达实体之间的关系,使得计算机能够理解和推理复杂的语义关系。然而,随着知识图谱规模的不断扩大,传统的基于逻辑和规则的推理方法已经无法满足现代应用对高效推理和深度语义挖掘的需求。
二一年冬末
2024/09/27
6130
Nature:功能神经成像作为整合神经科学的催化剂
功能性磁共振成像(fMRI)可以非侵入性地记录清醒的、有行为的人类大脑。通过跟踪不同认知和行为状态的全脑信号,或绘制与特定特征或临床状况相关的差异,功能磁共振成像提高了我们对大脑功能及其与正常和非典型行为之间联系的理解。尽管取得了这些进展,但使用功能磁共振成像的人类认知神经科学的进展与神经科学其他子领域的快速进展相对孤立,这些子领域本身也在某种程度上彼此孤立。从这个角度来看,我们认为功能磁共振成像可以很好地整合系统神经科学、认知神经科学、计算神经科学和临床神经科学的不同子领域。我们首先总结了功能磁共振成像作为一种成像工具的优点和缺点,然后重点介绍了在神经科学的每个子领域成功使用功能磁共振成像的研究实例。然后,我们为实现这一综合愿景所需的未来进展提供了路线图。通过这种方式,我们希望展示功能磁共振成像如何帮助开创神经科学跨学科一致性的新时代。
悦影科技
2023/11/26
4300
图神经网络(GNN)原理与应用
图神经网络(GNN)是一种深度学习的方法,特别擅长处理图结构的数据。通过一些特别的节点和边的策略,GNN能把图数据变成神经网络能训练的标准格式。在节点分类、边信息传播和图聚类这些任务中,GNN表现得都特别好。
算法进阶
2024/04/12
1.6K0
图神经网络(GNN)原理与应用
Nature子刊重磅综述:机器学习在神经退行性疾病诊疗中的应用
摘要:对神经退行性疾病的有效治疗存在巨大的需求。神经元变性的复杂性和患者群体的异质性给这些疾病的早期诊断工具和有效治疗的发展带来了巨大的挑战。机器学习是人工智能的子领域,它使科学家、临床医生和患者能够应对其中的一些挑战。在这篇综述中,作者讨论了机器学习如何实现医学图像的早期诊断和解释,以及新疗法的发现和发展。机器学习的不同应用具有一个统一的主题,即集成多个高维数据源,这些数据源都提供了对疾病的不同看法,并自动推导出可操作的见解。
悦影科技
2022/05/09
1.6K0
图神经网络的新基准
编者注:本文解读论文与我们曾发文章《Bengio 团队力作:GNN 对比基准横空出世,图神经网络的「ImageNet」来了》所解读论文,为同一篇,不同作者,不同视角。一同参考。
AI科技评论
2020/04/14
1.6K0
图神经网络的新基准
「图神经网络综述」最新2022综述-中国石油大学
在过去几年,深度学习已经在人工智能和机器学习上取得了成功,给社会带来了巨大的进步。深度学习的特点是堆积多层的神经网络层,从而具有更好的学习表示能力。卷积神经网络(convolutional neuralnetwork,CNN)的飞速发展更是将深度学习带上了一个新的台阶。
一点人工一点智能
2022/12/27
6510
「图神经网络综述」最新2022综述-中国石油大学
图神经网络性能提升方法综述
图神经网络(GNN)是深度学习领域的一个重要模型,已广泛应用于推荐系统、计算机视觉、自然语言处理、分子分析、数据挖掘和异常检测等现实场景。GNN在从图形数据中学习方面表现出优越的能力,其变体已被广泛应用。
算法进阶
2023/10/23
8930
图神经网络性能提升方法综述
脑影像中的深度学习研究:前景与挑战
深度学习(DL)在应用于自然图像分析时非常成功。相比之下,将其用于神经影像学数据分析时则存在一些独特的挑战,包括更高的维度、更小的样本量、多种异质模态以及有限的真实标签(ground truth)。在本文中结合神经影像学领域的四个不同且重要的类别讨论了DL方法:分类/预测、动态活动/连接性、多模态融合和解释/可视化。本文重点介绍了这些类别中每一类的最新进展,讨论了将数据特征和模型架构相结合的益处,并依据这些内容提出了在神经影像学数据中使用DL的指南。对于每一个类别,还评估了有希望的应用和需要克服的主要挑战。最后讨论了神经影像学DL临床应用的未来方向。
用户1279583
2022/04/12
1.2K0
脑影像中的深度学习研究:前景与挑战
BPI-GNN:可解释的基于脑网络的精神疾病诊断和分型
越来越多的证据表明,精神疾病,如重度抑郁症(MDD)和自闭症谱系障碍(ASD),并不是单一的疾病,而是包含多种共现症状和不同治疗反应的异质性综合征。这种临床异质性阻碍了精准诊断和治疗效果的进展。在本研究中,我们提出了一种新的可解释图神经网络 (GNN) 框架——BPI-GNN,用于分析功能磁共振图像(fMRI),利用了著名的原型学习。此外,我们引入了一种新的原型子图生成过程,以发现不同原型的关键边缘,并使用总相关性 (TC) 来确保不同原型子图模式的独立性。BPI-GNN能够有效地区分精神病患者和健康对照 (HC),并识别具有生物学意义的精神疾病亚型。我们对三个精神病数据集上的 11 种流行脑网络分类方法的性能进行了评估,发现我们的 BPI-GNN 总是获得最高的诊断准确性。更重要的是,我们检查了识别出的亚型在临床症状和基因表达谱方面的差异,并观察到我们识别出的基于大脑的亚型具有临床相关性。它还发现了与当前神经科学知识一致的亚型生物标志物。
悦影科技
2024/09/06
3070
图神经网络研究综述(GNN)
图神经网络由于其在处理非欧空间数据和复杂特征方面的优势,受到广泛关注并应用于推荐系统、知识图谱、交通道路分析等场景。
算法进阶
2023/10/31
1.5K0
图神经网络研究综述(GNN)
支持神经发育障碍诊断和治疗的技术:系统综述
根据《精神疾病诊断与统计手册》,神经发育障碍(ndd)是一组早期发病的疾病,其特征是各种缺陷,损害个人、学术、社交或职业领域的功能。近年来,ndd成为儿科人群中最常见的诊断之一,其中最常见的诊断是学习障碍,患病率约为8%,发展性语言障碍7%,自闭症谱系障碍(ASD, 2%),以及注意缺陷多动障碍(ADHD, 2%)。诊断本身可能具有挑战性,因为各种共病在NDD人群中不是例外,而是一种规则。另一个挑战是不同疾病之间一定程度的表型重叠,以及一种具有相同诊断的个体的症状和功能水平差异很大。早期发现ndd非常重要,因为它可以快速干预,改善儿童预后并最大化治疗效果,因为人类生命最初几年的神经可塑性很高。然而,转介进行NDD评估的患者在接受诊断时往往会遇到严重延误。根据最近发表的一项研究,40%的家庭在首次就诊后六个月仍在等待诊断。此外,在加拿大进行的研究表明,从转诊到收到ASD诊断的中位总等待时间为7个月。此外,一旦确诊,家庭往往要处理在开始治疗方面的严重延误和缺乏令人满意的治疗监测。例如,只有20%的图雷特综合症年轻人有机会接受行为抽动治疗,而那些接受治疗的人通常只参加不到建议次数的一半。造成这种情况的原因之一是缺乏训练有素的治疗师,特别是在地理上偏远的地区,以及临床时间不足,无法提供最佳护理实践。因此,为ndd的诊断和治疗确定具有时效性和易于获取的策略的重要性是显而易见的。
悦影科技
2023/11/17
4140
推荐阅读
相关推荐
图神经网络 | BrainGNN: 用于功能磁共振成像分析的可解释性脑图神经网络
更多 >
交个朋友
加入腾讯云官网粉丝站
蹲全网底价单品 享第一手活动信息
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档