大家好,我是Peter~
本文是基于机器学习的关联规则方法对IC电子产品的数据挖掘,主要内容包含:
本文关键词:电商、关联规则、机器学习、词云图
In 1:
import pandas as pd
import numpy as np
# 显示所有列
# pd.set_option('display.max_columns', None)
# 显示所有行
# pd.set_option('display.max_rows', None)
# 设置value的显示长度为100,默认为50
# pd.set_option('max_colwidth',100)
import time
import os
from datetime import datetime
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
#设置中文编码和负号的正常显示
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
import missingno as ms
from pyecharts.globals import CurrentConfig, OnlineHostType
from pyecharts import options as opts # 配置项
from pyecharts.charts import Bar, Scatter, Pie, Line,Map, WordCloud, Grid, Page # 各个图形的类
from pyecharts.commons.utils import JsCode
from pyecharts.globals import ThemeType,SymbolType
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots # 画子图
import jieba
from snownlp import SnowNLP
from sklearn.cluster import KMeans
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
import warnings
warnings.filterwarnings("ignore")
In 2:
# 数据中存在中文,指定读取的编码格式
df = pd.read_csv("ic_sale.csv",
encoding="gb18030", # windows系统需要指定类型;mac不需要
converters={"order_id":str,"product_id":str,"category_id":str,"user_id":str}
)
df.head()
Out2:
In 3:
# 1、数据shape
df.shape
Out3:
(564169, 11)
In 4:
# 2、数据字段类型
df.dtypes
Out4:
event_time object
order_id object
product_id object
category_id object
category_code object
brand object
price float64
user_id object
age int64
sex object
local object
dtype: object
In 5:
# 3、数据描述统计信息
df.describe()
Out5:
price | age | |
---|---|---|
count | 564169.000000 | 564169.000000 |
mean | 208.269324 | 33.184388 |
std | 304.559875 | 10.122088 |
min | 0.000000 | 16.000000 |
25% | 23.130000 | 24.000000 |
50% | 87.940000 | 33.000000 |
75% | 277.750000 | 42.000000 |
max | 18328.680000 | 50.000000 |
In 6:
# 4、总共多少个不同客户
df["user_id"].nunique()
Out6:
6908
In 7:
df.shape # 去重前
Out7:
(564169, 11)
In 8:
df.drop_duplicates(ignore_index=True,inplace=True)
In 9:
df.shape # 去重后
Out9:
(561214, 11)
In 10:
stats = []
for col in df.columns:
stats.append((col,
df[col].nunique(),
round(df[col].isnull().sum() * 100 / df.shape[0], 3),
round(df[col].value_counts(normalize=True, dropna=False).values[0] * 100,3),
df[col].dtype)
)
stats_df = pd.DataFrame(stats,
columns=['特征名', '属性个数', '缺失值占比', '最大属性占比', '特征类型'])
stats_df.sort_values('缺失值占比', ascending=False, ignore_index=True)
In 11:
df = df[df["price"] > 0]
In 12:
df.isnull().sum()
Out12:
event_time 0
order_id 0
product_id 0
category_id 0
category_code 128662
brand 27132
price 0
user_id 0
age 0
sex 0
local 0
dtype: int64
In 13:
ms.bar(df,color="red") # 缺失值可视化
plt.show()
最后直接填充缺失值:missing
In 14:
df.fillna("missing",inplace=True) # 填充missing
In 15:
df["event_time"].value_counts()
Out15:
1970-01-01 00:33:40 UTC 1302
2020-04-09 16:30:01 UTC 51
2020-04-08 16:30:01 UTC 49
2020-04-06 16:30:01 UTC 46
2020-04-05 16:30:01 UTC 44
...
2020-07-28 13:10:35 UTC 1
2020-07-28 13:10:21 UTC 1
2020-07-28 13:09:37 UTC 1
2020-07-28 13:08:23 UTC 1
2020-08-13 17:16:24 UTC 1
Name: event_time, Length: 389813, dtype: int64
从上面的结果中看到:1970-01-01 00:33:40
最多,其实就是时间字段的缺失值
In 16:
# 去掉最后的UTC
df["event_time"] = df["event_time"].apply(lambda x: x[:19])
# 时间数据类型转化:字符类型---->指定时间格式
df['event_time'] = pd.to_datetime(df['event_time'], format="%Y-%m-%d %H:%M:%S")
# 提取多个时间相关字段
# df['month']=df['event_time'].dt.month
# df['day'] = df['event_time'].dt.day
# df['dayofweek']=df['event_time'].dt.dayofweek
# df['hour']=df['event_time'].dt.hour
In 17:
# 不同性别下的年龄分布
fig = px.box(df,y=["age"], color="sex")
fig.show()
# 不同年龄段人数统计
fig = plt.figure(figsize=(12,6))
sns.countplot(df["age"])
plt.title("Counts of Different Age")
plt.show()
针对年龄字段的分箱操作:
In 19:
df["age"] = pd.cut(df["age"],bins=4,precision=0)
df["age"] # 分段之后的age字段显示
Out19:
0 (16.0, 24.0]
1 (33.0, 42.0]
2 (24.0, 33.0]
3 (16.0, 24.0]
4 (16.0, 24.0]
...
561209 (16.0, 24.0]
561210 (16.0, 24.0]
561211 (16.0, 24.0]
561212 (16.0, 24.0]
561213 (16.0, 24.0]
Name: age, Length: 561175, dtype: category
Categories (4, interval[float64, right]): [(16.0, 24.0] < (24.0, 33.0] < (33.0, 42.0] < (42.0, 50.0]]
In 22:
fig = px.scatter(df[df["brand"] != "missing"], # 除去missing数据
# x="local",
y="price",
facet_col="age",
color="local",
size="price"
)
fig.show()
In 23:
age_brand = df.groupby(["age","sex","brand"]).size().reset_index().rename(columns={0:"number"})
age_brand.head()
Out23:
age | sex | brand | number | |
---|---|---|---|---|
0 | (16.0, 24.0] | 女 | a-case | 32 |
1 | (16.0, 24.0] | 女 | acana | 0 |
2 | (16.0, 24.0] | 女 | accesstyle | 3 |
3 | (16.0, 24.0] | 女 | action | 0 |
4 | (16.0, 24.0] | 女 | activision | 3 |
In 24:
# 实现排序功能-降序
age_brand = age_brand.sort_values(["age","number"],ascending=[True,False],ignore_index=True)
age_brand.head()
Out24:
age | sex | brand | number | |
---|---|---|---|---|
0 | (16.0, 24.0] | 男 | samsung | 11884 |
1 | (16.0, 24.0] | 女 | samsung | 11882 |
2 | (16.0, 24.0] | 男 | apple | 4561 |
3 | (16.0, 24.0] | 女 | apple | 4283 |
4 | (16.0, 24.0] | 男 | missing | 3354 |
In 25:
# 条件筛选
age_brand = age_brand.query("number > 0 & brand != 'missing'")
In 26:
fig = px.treemap(
age_brand, # 传入数据
path=[px.Constant("all"),"age","sex","brand"], # 传递数据路径
values="number" # 数值显示
)
fig.update_traces(root_color="lightskyblue")
fig.update_layout(margin=dict(t=30,l=30,r=25,b=30))
fig.show()
In 27:
age_brand.head()
Out27:
age | sex | brand | number | |
---|---|---|---|---|
0 | (16.0, 24.0] | 男 | samsung | 11884 |
1 | (16.0, 24.0] | 女 | samsung | 11882 |
2 | (16.0, 24.0] | 男 | apple | 4561 |
3 | (16.0, 24.0] | 女 | apple | 4283 |
6 | (16.0, 24.0] | 男 | ava | 3317 |
In 28:
brand_list = age_brand["brand"].value_counts().reset_index()
brand_list.columns=["word","number"]
brand_list.head(10)
Out28:
word | number | |
---|---|---|
0 | samsung | 8 |
1 | darina | 8 |
2 | huion | 8 |
3 | aquapick | 8 |
4 | amigami | 8 |
5 | sjcam | 8 |
6 | rockstar | 8 |
7 | franke | 8 |
8 | bridgestone | 8 |
9 | tailg | 8 |
In 29:
information_zip = [tuple(z) for z in zip(brand_list["word"].tolist(), brand_list["number"].tolist())]
# 绘图
c = (
WordCloud()
.add("", information_zip, word_size_range=[20, 80], shape=SymbolType.DIAMOND)
.set_global_opts(title_opts=opts.TitleOpts(title="品牌词云图"))
)
c.render_notebook()
查看有多少种不同的category_code和对应的数量,使用value_counts()方法:
In 30:
df["category_code"].value_counts()
Out30:
missing 128662
electronics.smartphone 101502
computers.notebook 25917
appliances.kitchen.refrigerators 20296
electronics.audio.headphone 20049
...
kids.swing 8
country_yard.watering 5
sport.snowboard 3
apparel.costume 2
apparel.shoes 2
Name: category_code, Length: 124, dtype: int64
结论:除去missing部分,最多的是electronics.smartphone,即:电子智能手机,其次就是电脑笔记本
In 31:
fig = px.bar(df["category_code"].value_counts()[1:30]) # 前30个category_code
fig.show()
只选取需要的字段:
In 32:
df = df[df["category_code"] != "missing"] # 去除missing部分
df = df[["category_code", "brand","age", "sex", "local"]]
将category_code字段进行切割处理:
In 33:
df["category_code"] = df["category_code"].apply(lambda x: x.split(".") if "." in x else [x])
df.head()
Out33:
category_code | brand | age | sex | local | |
---|---|---|---|---|---|
0 | electronics, tablet | samsung | (16.0, 24.0] | 女 | 海南 |
1 | electronics, audio, headphone | huawei | (33.0, 42.0] | 女 | 北京 |
3 | furniture, kitchen, table | maestro | (16.0, 24.0] | 男 | 重庆 |
4 | electronics, smartphone | apple | (16.0, 24.0] | 男 | 北京 |
5 | appliances, kitchen, refrigerators | lg | (16.0, 24.0] | 男 | 北京 |
In 34:
data = df["category_code"].tolist()
data[:3]
Out34:
[['electronics', 'tablet'],
['electronics', 'audio', 'headphone'],
['furniture', 'kitchen', 'table']]
In 35:
import itertools
# 通过chain方法从可迭代对象中生成;展开成列表
sum_data = list(itertools.chain.from_iterable(data))
sum_data[:10]
Out35:
['electronics',
'tablet',
'electronics',
'audio',
'headphone',
'furniture',
'kitchen',
'table',
'electronics',
'smartphone']
In 36:
category_code_number = pd.value_counts(sum_data).to_frame().reset_index()
category_code_number.columns=["category_code","number"]
category_code_number.head()
Out36:
category_code | number | |
---|---|---|
0 | electronics | 156709 |
1 | appliances | 150331 |
2 | kitchen | 107852 |
3 | smartphone | 101502 |
4 | computers | 76877 |
In 37:
information_zip = [tuple(z) for z in zip(category_code_number["category_code"].tolist(), category_code_number["number"].tolist())]
# 绘图
c = (
WordCloud()
.add("", information_zip, word_size_range=[20, 80], shape=SymbolType.DIAMOND)
.set_global_opts(title_opts=opts.TitleOpts(title="商品种类词云图"))
)
c.render_notebook()
In 38:
male = df[df["sex"] == "男"]
male.head()
Out38:
category_code | brand | age | sex | local | |
---|---|---|---|---|---|
3 | furniture, kitchen, table | maestro | (16.0, 24.0] | 男 | 重庆 |
4 | electronics, smartphone | apple | (16.0, 24.0] | 男 | 北京 |
5 | appliances, kitchen, refrigerators | lg | (16.0, 24.0] | 男 | 北京 |
6 | appliances, personal, scales | polaris | (24.0, 33.0] | 男 | 广东 |
17 | appliances, kitchen, kettle | tefal | (33.0, 42.0] | 男 | 广东 |
In 39:
import efficient_apriori as ea
male_list = male["category_code"].tolist()
# itemsets:频繁项 rules:关联规则
itemsets, rules = ea.apriori(male_list,
min_support=0.005,
min_confidence=1
)
In 40:
len(itemsets[1])
Out40:
60
In 41:
itemsets[1] # 一个频繁项集
# 字典的值value的降序排列
dict(sorted(itemsets[1].items(), key=lambda x: x[1], reverse=True))
In 43:
len(itemsets[2]) # 总个数
Out43:
84
In 44:
# 两个频繁项集
dict(sorted(itemsets[2].items(), key=lambda x: x[1], reverse=True))
In 45:
len(itemsets[3]) # 总个数
Out45:
32
In 46:
# 三个频繁项集
dict(sorted(itemsets[3].items(), key=lambda x: x[1], reverse=True))
Out46:
{('appliances', 'kitchen', 'refrigerators'): 10209,
('audio', 'electronics', 'headphone'): 10154,
('electronics', 'tv', 'video'): 8876,
('appliances', 'environment', 'vacuum'): 8069,
('appliances', 'kitchen', 'washer'): 7235,
('appliances', 'kettle', 'kitchen'): 6389,
('computers', 'mouse', 'peripherals'): 6359,
('furniture', 'kitchen', 'table'): 5626,
('appliances', 'hood', 'kitchen'): 4487,
('appliances', 'blender', 'kitchen'): 4439,
('appliances', 'kitchen', 'microwave'): 3830,
('air_conditioner', 'appliances', 'environment'): 3806,
('appliances', 'personal', 'scales'): 3423,
('computers', 'network', 'router'): 3318,
('components', 'computers', 'hdd'): 2598,
('appliances', 'kitchen', 'meat_grinder'): 2361,
('components', 'computers', 'cpu'): 2055,
('appliances', 'kitchen', 'oven'): 1958,
('appliances', 'environment', 'fan'): 1952,
('computers', 'keyboard', 'peripherals'): 1940,
('computers', 'peripherals', 'printer'): 1802,
('appliances', 'environment', 'water_heater'): 1753,
('computers', 'monitor', 'peripherals'): 1733,
('components', 'computers', 'cooler'): 1717,
('cabinet', 'furniture', 'living_room'): 1550,
('chair', 'furniture', 'kitchen'): 1513,
('appliances', 'hair_cutter', 'personal'): 1388,
('air_heater', 'appliances', 'environment'): 1341,
('appliances', 'dishwasher', 'kitchen'): 1329,
('furniture', 'living_room', 'shelving'): 1314,
('appliances', 'kitchen', 'mixer'): 1288,
('construction', 'screw', 'tools'): 1194}
In 47:
female = df[df["sex"] == "女"]
female.head()
Out47:
category_code | brand | age | sex | local | |
---|---|---|---|---|---|
0 | electronics, tablet | samsung | (16.0, 24.0] | 女 | 海南 |
1 | electronics, audio, headphone | huawei | (33.0, 42.0] | 女 | 北京 |
7 | electronics, video, tv | samsung | (16.0, 24.0] | 女 | 北京 |
8 | computers, components, cpu | intel | (42.0, 50.0] | 女 | 浙江 |
10 | computers, notebook | asus | (42.0, 50.0] | 女 | 广东 |
In 48:
import efficient_apriori as ea
female_list = male["category_code"].tolist()
# itemsets:频繁项 rules:关联规则
itemsets, rules = ea.apriori(female_list,
min_support=0.005,
min_confidence=1
)
In 49:
len(itemsets[1]) # 总个数
Out49:
60
In 50:
# 一个频繁项集
dict(sorted(itemsets[1].items(), key=lambda x: x[1], reverse=True))
In 51:
# 两个频繁项集
dict(sorted(itemsets[2].items(), key=lambda x: x[1], reverse=True))
In 52:
# 三个频繁项集
dict(sorted(itemsets[3].items(), key=lambda x: x[1], reverse=True))
In 53:
brand_category = df.groupby(["brand"])["category_code"].sum().reset_index()
brand_category
# 去重功能-set
brand_category["category_code"] = brand_category["category_code"].apply(lambda x: list(set(x)))
brand_category
import efficient_apriori as ea
brand_list = brand_category["category_code"].tolist()
# itemsets:频繁项 rules:关联规则
itemsets, rules = ea.apriori(
brand_list,
min_support=0.05,
min_confidence=1
)
# 三个频繁项集
dict(sorted(itemsets[3].items(), key=lambda x: x[1], reverse=True))
# 两个频繁项集
dict(sorted(itemsets[2].items(), key=lambda x: x[1], reverse=True))
# 一个频繁项集
dict(sorted(itemsets[1].items(), key=lambda x: x[1], reverse=True))
electronics
与smartphone
,appliances
与kitchen
,或者computers
与notebook
appliances
和kitchen
;以及audio--->electronics--->headphone
是主要关联产品原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。