水位标尺智能识别系统通过python+yolo网络模型深度学习技术,水位标尺智能识别系统对河道湖泊水库等水位进行7*24小时实时自动监测,水位标尺智能识别系统监测到水位到达警戒线时,立即抓拍存档告警,并同步回传后台提醒人员及时处理。我们使用YOLO(你只看一次)算法进行对象检测。YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。
目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO 一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。
YOLO不会在输入图像中搜索可能包含对象的感兴趣区域,而是将图像分割成单元格,通常是19×19网格。每个细胞负责预测K个包围框。具有最大概率的类被选择并分配给特定的网格单元。类似的过程发生在图像中的所有网格单元格上。在预测类概率后,下一步进行非最大抑制,这有助于算法消除不必要的锚点。一旦完成,算法就会找到具有下一个最高类别概率的包围框,并进行相同的过程,直到我们剩下所有不同的包围框为止。在此之后,我们几乎完成了所有的工作,算法最终输出所需的向量,显示各个类的包围框的细节。微小Yolo算法——为了让Yolo运行得更快,Redmon等人(Yolo的创建者)定义了Yolo架构的一个变体,称为微小Yolo。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。