Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >十分钟带你理解什么是布隆过滤器?

十分钟带你理解什么是布隆过滤器?

作者头像
章为忠学架构
发布于 2023-03-23 12:25:19
发布于 2023-03-23 12:25:19
1.4K02
代码可运行
举报
文章被收录于专栏:AI大模型AI大模型
运行总次数:2
代码可运行

之前我们介绍Redis入门系列课程的时候,讲了Redis的缓存雪崩、穿透、击穿。在文章里我们说了解决缓存穿透的办法之一,就是使用布隆过滤器,但是由于并没有详细介绍什么是布隆过滤器,所以就有很多小伙伴问我——到底什么是布隆过滤器?

那么接下来就来给大家介绍什么是布隆过滤器以及他的实现原理。

一、什么是布隆过滤器?

布隆过滤器(Bloom Filter)是非常经典的以空间换时间的算法。布隆过滤器由布隆在 1970 年提出。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

其实说白了,布隆过滤器就是一种节省空间的概率数据结构,通过使用很数组和一些列随机映射函数。用于判断一个元素是否在一个集合中,0代表不存在某个数据,1代表存在某个数据。

二、布隆过滤器的优缺点

2.1优点

相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。

  • 布隆过滤器存储空间和插入/查询时间都是常数(即hash函数的个数);
  • Hash 函数相互之间没有关系,方便由硬件并行实现;
  • 布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势;
  • 布隆过滤器可以表示全集,其它任何数据结构都不能;

2.2缺点

布隆过滤器的缺点和优点一样明显:

  • 误算率(False Positive)是其中之一。随着存入的元素数量增加,误算率随之增加(误判补救方法是:再建立一个小的白名单,存储那些可能被误判的信息)。但是如果元素数量太少,则使用散列表足矣。
  • 一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加 1, 这样删除元素时将计数器减掉就可以了。然而要保证安全的删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。

三、布隆过滤器的使用场景

利用布隆过滤器减少磁盘 IO 或者网络请求,因为一旦一个值必定不存在的话,就可以直接结束查询,比如以下场景:

  • 大数据去重,比如判断一个数字是否存在于包含大量数字的数字集中(数字集很大,5 亿以上!);
  • 网页爬虫对 URL 的去重,避免爬取相同的 URL 地址;
  • 反垃圾邮件,从数十亿个垃圾邮件列表中判断某邮箱是否垃圾邮箱;
  • 缓存击穿,将已存在的缓存放到布隆过滤器中,当黑客频繁访问不存在的缓存时迅速返回避免缓存及数据库挂掉;

四、布隆过滤器实现原理

4.1数据结构

布隆过滤器是一个基于数组和哈希函数散列元素的结构,很像HashMap的哈希桶。它可以用于检测一个元素是否在集合中。它的优点是空间效率和查询时间比一般算法要好很多,缺点是有一定概率的误判性,如HashMap出现哈希碰撞。

4.2实现原理

(1)存入过程

布隆过滤器的核心就是一个二进制数据的集合和hash计算函数。当一个元素加入布隆过滤器中的时会进行如下操作:

1.使用布隆过滤器中的哈希函数对元素值进行计算,返回对应的哈希值(一般有几个哈希函数得到几个哈希值);

2.根据返回的hash值映射到对应的二进制集合的下标;

3.将下标对应的二进制数据改成1;

如上图所示,三个Hash函数计算key值“test”的hash值分别为2、5、9;那么就会把集合中2、5、9下标对应的数据改成1。

(2)判断是否存在

当我们需要判断一个元素是否存在于布隆过滤器的时候,会进行如下操作:

1.对给定元素再次进行相同的哈希计算;

2.根据返回的hash值判断位数组中对应的元素是否都为 1,如果值都为 1,那么说明这个值在布隆过滤器中,如果存在一个值不为 1,则说明该元素不在布隆过滤器中。

从上图可以看到,元素“test”通过哈希函数计算,得到下标为 2、5、9 这 3个数据。虽然前两个点都为 1,但是很明显第 3 个点得到的数据为0,说明元素不在集合中。

五、布隆过滤器实现

目前市面上有很多实现布隆过滤器的方式,比如Google的GUAVA实现,还有Redis的插件RedisBloom等。 接下来,我们简单实现一个布隆过滤器算法。需要注意的是,我这里的示例是为了演示布隆过滤器的实现原理的简单实现,实际上完善的布隆过滤器的算法还是比较复杂的,包括误判率,哈希计算方式等。

1. 构建集合

根据之前介绍的布隆过滤器的实现原理,布隆过滤器的实现主要包括可以存放二进制元素的 BitSet 以及多样性的哈希计算函数。下面通过实例演示布隆过滤器的实现。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public class MyBloomFilter {
    /**
     * 位数组的大小
     */
    private static final int DEFAULT_SIZE = 2 << 24;
    
    /**
     * 位数组。数组中的元素只能是 0 或者 1
     */
    private BitSet bits = new BitSet(DEFAULT_SIZE);
    
    /**
     * 通过这个数组可以创建 3 个不同的哈希函数
     */
    private static final int[] SEEDS = new int[]{3, 13, 46};
    
    /**
     * 存放包含 hash 函数的类的数组
     */
    private SimpleHash[] func = new SimpleHash[SEEDS.length];

    /**
     * 初始化多个包含 hash 函数的类的数组,每个类中的 hash 函数都不一样
     */
    public MyBloomFilter() {
        // 初始化多个不同的 Hash 函数
        for (int i = 0; i < SEEDS.length; i++) {
            func[i] = new SimpleHash(DEFAULT_SIZE, SEEDS[i]);
        }
    }
}

所有的元素存放都经过多样的哈希计算存放到 BitSet 中,这样可以尽可能地分散元素,减少误判。

2. 哈希函数

这里只是提供了一种哈希计算的方式,实际可以实现多种不同的hash计算方式,每一个哈希计算都是一次扰动处理。一个元素的存放可以经过多次哈希,尽量让元素值做到散列,从而避免hash碰撞。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
     /**
     * 静态内部类。用于 hash 操作!
     */
    public static class SimpleHash {

        private int cap;
        private int seed;

        public SimpleHash(int cap, int seed) {
            this.cap = cap;
            this.seed = seed;
        }

        /**
         * 计算 hash 值
         */
        public int hash(Object value) {
            int h;
            return (value == null) ? 0 : Math.abs(seed * (cap - 1) & ((h = value.hashCode()) ^ (h >>> 16)));
        }
    }

3. 添加元素

添加元素就是当某个元素不在集合中时,我们使用布隆过滤器中的哈希函数对元素值进行计算得到哈希值,然后根据返回的哈希值,将集合数组中把对应下标的值置为 1。具体代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
 /**
     * 添加元素到位数组
     */
    public void add(Object value) {
        for (SimpleHash f : func) {
            bits.set(f.hash(value), true);
        }
    }

4. 比对元素

比对元素就是判断某个元素是否存在。我们对该元素进行哈希计算,然后通过哈希值获取集合中的数据,最后把这些哈希值 进行&& 计算,从而确定该元素是否存在。具体代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
 /**
     * 判断指定元素是否存在于位数组
     */
    public boolean contains(Object value) {
        boolean ret = true;
        for (SimpleHash f : func) {
            ret = ret && bits.get(f.hash(value));
        }
        return ret;
    }

这里使用多个集合中的bit位置记录同一个元素的状态,确保结果更加准确,避免hash碰撞。

5. 验证测试

接下来我们创建一个测试类,验证布隆过滤器是否生效。示例代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public class MyBloomFilterTest {
    public static void main(String[] args) {
        String value1 = "com:weiz:user:logininfo";
        String value2 = "https://www.cnblogs.com/zhangweizhong";
        String value3 = "200110221";

        MyBloomFilter filter = new MyBloomFilter();

        filter.add(value1);
        filter.add(value2);

        System.out.println("key:" + value1 +"是否存在:"+ filter.contains(value1));
        System.out.println("key:" + value2 +"是否存在:"+ filter.contains(value2));
        System.out.println("key:" + value3 +"是否存在:"+ filter.contains(value3));
    }
}

运行上面的测试代码,验证布隆过滤器算法是否正常,具体结果如下图所示:

通过上面的输出结果可以看到,value1和value2已经添加到布隆过滤器,返回结果为true,而value3未加入到布隆过滤器,所以返回false。说明布隆过滤器起到了数据过滤的作用。

五、常见面试题

1.布隆过滤器的使用场景?

(1)解决Redis缓存穿透

(2)在爬虫时,对爬虫网址进行过滤,已经存在布隆中的网址,不在爬取。

(3)垃圾邮件过滤,对每一个发送邮件的地址进行判断是否在布隆的黑名单中,如果在就判断为垃圾邮件。

2.布隆过滤器的实现原理和方式?

参照上面讲的布隆过滤器原理。

3.如何提高布隆过滤器的准确性?

使用更大的集合和同时用多个不同的hash函数计算方式。

4.你了解哪些类型的布隆过滤器实现?

(1)Google 开源的 Guava 中自带的布隆过滤器;

(2)Redis 中的布隆过滤器插件RedisBloom;

最后

以上,我们就把布隆过滤器的原理介绍完了,布隆过滤器的原理还是比较简单的,但是要实现真正的布隆过滤器算法,还需要考虑很多其他的问题:如误判率等。感兴趣的朋友可以深入研究。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-11-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 架构师精进 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
布隆过滤器
布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
Vincent-yuan
2022/05/06
4680
布隆过滤器
不了解布隆过滤器?一文给你整的明明白白!
海量数据处理以及缓存穿透这两个场景让我认识了布隆过滤器 ,我查阅了一些资料来了解它,但是很多现成资料并不满足我的需求,所以就决定自己总结一篇关于布隆过滤器的文章。希望通过这篇文章让更多人了解布隆过滤器,并且会实际去使用它!
乔戈里
2019/12/11
9830
不了解布隆过滤器?一文给你整的明明白白!
布隆过滤器(亿级数据过滤算法)原理就是这么简单
我们以演进的方式来逐渐认识布隆过滤器。先抛出一个问题爬虫系统中URL是怎么判重的?你可能最先想到的是将URL放到一个set中,但是当数据很多的时候,放在set中是不现实的。
Java识堂
2020/04/22
1.4K0
布隆过滤器(亿级数据过滤算法)原理就是这么简单
布隆过滤器原理和使用场景
Bloom Filter 会使用一个较大的 bit 数组来保存所有的数据,数组中的每个元素都只占用 1 bit ,并且每个元素只能是 0 或者 1(代表 false 或者 true),用于检索元素是否存在于大集合中的数据结构。
卷福同学
2025/02/19
1810
缓存穿透防范-布隆过滤器
我们在项目中使用缓存通常都是先检查缓存中是否存在,如果存在直接返回缓存内容,如果不存在就直接查询数据库然后再缓存查询结果返回。这个时候如果我们查询的某一个数据在缓存中一直不存在,就会造成每一次请求都查询DB,这样缓存就失去了意义,在流量大时,可能DB就挂掉了。
张伦聪zhangluncong
2022/10/26
3990
布隆过滤器你值得拥有的开发利器
在程序的世界中,布隆过滤器是程序员的一把利器,利用它可以快速地解决项目中一些比较棘手的问题。如网页 URL 去重、垃圾邮件识别、大集合中重复元素的判断和缓存穿透等问题。
阿宝哥
2019/11/29
1.1K0
Bloom Filter布隆过滤器
Bloom Filter是1970年由Bloom提出的,最初广泛用于拼写检查和数据库系统中。近年来,随着计算机和互联网技术的发展,数据集的不断扩张使得 Bloom filter获得了新生,各种新的应用和变种不断涌现。Bloom filter是一个空间效率很高的数据结构,它由一个位数组和一组hash映射函数组成。Bloom filter可以用于检索一个元素是否在一个集合中,它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
海天一树
2018/07/25
7080
Bloom Filter布隆过滤器
内存崩溃了?其实你只需要换一种方式
使用 JDK 自带的 Set 集合来进行 URL 去重,看上去效果不错,但是这种做法有一个致命了缺陷,就是随着采集的 URL 增多,你需要的内存越来越大,最终会导致你的内存崩溃。那我们在不使用数据库的情况下有没有解决办法呢?布隆过滤器!它就可以完美解决这个问题,布隆过滤器有什么特殊的地方呢?接下来就一起来学习一下布隆过滤器。
Java_老男孩
2019/12/02
5180
【实战问题】-- 布隆过滤器的三种实践:手写,Redission以及Guava(2)
前面我们已经讲过布隆过滤器的原理【实战问题】-- 缓存穿透之布隆过滤器(1),都理解是这么运行的,那么一般我们使用布隆过滤器,是怎么去使用呢?如果自己去实现,又是怎么实现呢?
秦怀杂货店
2021/05/13
2.3K0
布隆过滤器解读(Java实现)
布隆过滤器:(布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量(位图)和一系列随机映射函数(哈希函数)。
一个风轻云淡
2023/12/13
5110
如何实现大数据集查询?Bloom Filter或许是你想要的
虽然上面描述的这几种数据结构配合常见的排序、二分搜索可以快速高效的处理绝大部分判断元素是否存在集合中的需求。但是当集合里面的元素数量足够大,如果有500万条记录甚至1亿条记录呢?这个时候常规的数据结构的问题就凸显出来了。数组、链表、树等数据结构会存储元素的内容,一旦数据量过大,消耗的内存也会呈现线性增长,最终达到瓶颈。有的同学可能会问,哈希表不是效率很高吗?查询效率可以达到O(1)。但是哈希表需要消耗的内存依然很高。使用哈希表存储一亿 个垃圾 email 地址的消耗?哈希表的做法:首先,哈希函数将一个email地址映射成8字节信息指纹;考虑到哈希表存储效率通常小于50%(哈希冲突);因此消耗的内存:8 * 2 * 1亿 字节 = 1.6G 内存,普通计算机是无法提供如此大的内存。这个时候,布隆过滤器(Bloom Filter)就应运而生。在继续介绍布隆过滤器的原理时,先讲解下关于哈希函数的预备知识。
流川枫
2018/09/12
1.1K0
如何实现大数据集查询?Bloom Filter或许是你想要的
海量数据处理之BloomFilter
一提到元素查找,我们会很自然的想到HashMap。通过将哈希函数作用于key上,我们得到了哈希值,基于哈希值我们可以去表里的相应位置获取对应的数据。除了存在哈希冲突问题之外,HashMap一个很大的问题就是空间效率低。引入Bloom Filter则可以很好的解决空间效率的问题。
Spark学习技巧
2018/12/18
1.3K0
Reids(4)——神奇的HyperLoglog解决统计问题
上一次 我们学会了使用 HyperLogLog 来对大数据进行一个估算,它非常有价值,可以解决很多精确度不高的统计需求。但是如果我们想知道某一个值是不是已经在 HyperLogLog 结构里面了,它就无能为力了,它只提供了 pfadd 和 pfcount 方法,没有提供类似于 contains 的这种方法。
我没有三颗心脏
2020/03/20
7580
Reids(4)——神奇的HyperLoglog解决统计问题
BloomFilter 布隆过滤器思想原理和代码实现
布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。
一个会写诗的程序员
2022/12/21
9210
BloomFilter 布隆过滤器思想原理和代码实现
从位图原理到布隆过滤器的实现
假设一个int占4个字节(32位),40个亿个整数就是160亿个字节,大概相当于16GB,假设一台计算机只有2GB内存,则16GB一次加载不完,需要分8次加载,从磁盘加载数据是磁盘io操作,是非常慢的(比内存中的操作要慢100倍),每次加载这么大的数据,并且要8次,那么查找的时间可以达到分钟甚至小时级别。
evenleo
2020/06/07
9630
布隆过滤器的java实现
private static final int DEFAULT_SIZE = 2 << 29;//布隆过滤器的比特长度
sanmutongzi
2020/03/04
9570
海量数据处理利器之布隆过滤器
      看见了海量数据去重,找到停留时间最长的IP等问题,有博友提到了Bloom Filter,我就查了查,不过首先想到的是大叔,下面就先看看大叔的风采。 一、布隆过滤器概念引入       (B
mukekeheart
2018/02/27
1.4K0
海量数据处理利器之布隆过滤器
使用Java实现布隆过滤器
布隆过滤器(Bloom Filter)是一种数据结构,可以快速、高效地判断一个元素是否存在于一个集合中,其特点是空间效率高且查询速度快。在日常的编程工作和项目开发中,布隆过滤器经常被用于缓存、防止缓存穿透等场景。
大盘鸡拌面
2024/03/02
5380
布隆过滤器:原理与应用
这个时候,布隆过滤器(Bloom Filter)就派上了用场。 作为一种空间高效的概率型数据结构,布隆过滤器能够快速有效地检测一个元素是否属于一个集合。其应用广泛,从网络爬虫的网页去重,到数据库查询优化,乃至比特币网络的交易匹配,都离不开它的身影。
BookSea
2023/10/12
4940
布隆过滤器的原理_什么是布隆过滤器
作用嘛就是用来过滤非法key,避免缓存穿透(请求直接打到数据库),布隆过滤器底层用的是位数组,不仅节省空间,性能也嘎嘎猛,而且占用内存不会随着使用变大
全栈程序员站长
2022/11/09
3450
相关推荐
布隆过滤器
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验