前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >PICO Voice - Porcupine

PICO Voice - Porcupine

作者头像
用户6026865
发布于 2023-03-02 13:24:29
发布于 2023-03-02 13:24:29
7150
举报

Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening voice-enabled applications. It is-

  • using deep neural networks trained in real-world environments.
  • compact and computationally-efficient. It is perfect for IoT.
  • cross-platform
  • scalable. It can detect multiple always-listening voice commands with no added runtime footprint.
  • self-service. Developers can train custom wake word models using Picovoice Console - https://console.picovoice.ai/signup

Get Started

Anyone who is using Picovoice needs to have a valid AccessKey. AccessKey is your authentication and authorization token for using Picovoice. It also verifies that your usage is within the limits of your account. You must keep your AccessKey secret!

Sign up for Picovoice Console

Sign up for Picovoice Console. It is free, no credit card required.

Obtain your AccessKey

Log in to your Picovoice Console account and copy your AccessKey from the home page.

Download SDK

Picovoice SDKs are available both on GitHub and via SDK-specific package managers. Follow one of the quick starts to get started with Porcupine using your newly-created AccessKey.

Custom Wake Words

Log in to the Picovoice Console and navigate to the Porcupine page.

Create your Wake Word

A unique feature of the Porcupine wake word engine is that one can simply type in the trigger phrase and it will train a model for that specific phrase within seconds. Picovoice uses a technique called transfer learning, which mimics how humans learn new phrases.

When in the wake word console, select a language and type the wake phrase you want to train:

The choice of phrase is important for both accuracy and user experience. A good wake phrase needs to have some properties in terms of length and number of syllables. See Tips for Choosing a Wake Word for a summary.

The Console will validate your wake phrase and let you know if it's a good choice.

Test

Once you have entered a valid wake word, you can test it right in your browser. Test the wake phrase using the microphone button:

Even if you turn off your WiFi, the testing will continue to function, as all voice processing is performed in the browser itself.

Train

Click on the Train button and select which platform you'd like the model to be trained for:

The wake word models created by Console are platform-specific: a model trained for Raspberry Pi cannot run on Android, for example.

Once you've selected a valid platform, click the Download button to initiate training and download the result.

The model file (.ppn) will train in seconds and start downloading immediately upon a successful training.

Use the .ppn file with the Picovoice SDK or Porcupine directly as a wake word / always-listening component of your voice user interface.

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-12-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 SmellLikeAISpirit 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Sensory发布嵌入式THF&TNL V6.18.1版本
Sensory于近日发布其嵌入式语音识别算法引擎 - TrulyHandsFree,和其嵌入式大词汇量连续语言识别引擎(Large Vocabulary Continuous Speech Recognition)- TrulyNatural的最新版本,即V6.18.1版本。
用户6026865
2022/04/02
3720
Sensory发布嵌入式THF&TNL V6.18.1版本
Cumstom Build VUI On-device Using VoiceHub
Silicon Labs just announced availability of Sensory’s Truly HandsFree solution working on the EFR32 Series 1 and Series 2 families.
用户6026865
2023/03/03
2050
Cumstom Build VUI On-device Using VoiceHub
Sensory’s TrulyHandsfree and Arm’sCortex-M55
Efficient wake word recognition on microcontrollers with Cortex-M55 and Helium technology for use in consumer and automotive products that include more and more AI features for voice applications.
用户6026865
2022/09/02
3380
Sensory’s TrulyHandsfree and Arm’sCortex-M55
Sensory & ST Micro – Natural Language on CM7 Core MCU
Sensory is making an announcement with our partner ST Micro, and we are intentionally NOT being vague. This partnership is designed to make it easy to develop or prototype and we have created a very clear path for interested clients. This partnership combines a few key elements that make it VERY special and easy to develop speech-based or voice controlled products:
用户6026865
2022/09/02
2260
Sensory & ST Micro – Natural Language on CM7 Core MCU
Voice ID On-device - Embedded Secure Authentication Solution
Easy, Embedded and Secure Voice Biometric Authentication for Devices and Applications
用户6026865
2022/09/02
5080
Voice ID On-device - Embedded Secure  Authentication Solution
Pytorch版本的BERT
BERT地址:https://github.com/google-research/bert
玖柒的小窝
2021/10/22
1.6K0
Sensory's VOICE BIOMETRIC REVOLUTION
WHY VOICE ID IS NOW SECURE ENOUGHFOR DEVICE UNLOCK
用户6026865
2023/03/02
3010
Sensory's VOICE BIOMETRIC REVOLUTION
Voice Liveness Challenge
While use of an active challenge/response paradigm to confirm liveness of the subject in a biometric authentication system can greatly strengthen security, it also carries with it an added burden on the user. Requesting the user to perform specific extra actions can increase the time to authenticate, increases the likelihood of user error, and can lead to missed detections.
用户6026865
2022/09/02
2600
Voice Liveness Challenge
访谈 - Sensory CEO Todd Mozer与FindBiometrics CEO Peter O'Neil
Sensory CEO Todd Mozer近日接受了FindBiometrics CEO Peter O'Neil的专访。内容包括了 Sensory于2019年对Vocalize.ai,独立第三方语音和声音生物特征测试实验室的收购,以及包含语音识别和交互,面部识别和模拟的人的虚拟化身(virtual avatar)的应用,以及关于当但隐私保护的探讨等等。
用户6026865
2020/01/17
4300
构建基于Transformer的推荐系统
点击上方“Deephub Imba”,关注公众号,好文章不错过 ! 使用基于BERT的构建基于协同过滤的推荐模型 基于编码器的自注意力Transformer非常擅长预测自然语言生成任务的下一个
deephub
2022/11/11
7710
构建基于Transformer的推荐系统
mask rcnn训练自己的数据集
最近迷上了mask rcnn,也是由于自己工作需要吧,特意研究了其源代码,并基于自己的数据进行训练~
3D视觉工坊
2020/12/11
2.6K0
mask rcnn训练自己的数据集
使用Pytorch和BERT进行多标签文本分类
自然语言处理(NLP)是一种将非结构化文本处理成有意义的知识的人工智能技术。NLP解决了分类、主题建模、文本生成、问答、推荐等业务问题。虽然TF/IDF矢量化或其他高级词嵌入(如GLOVE和Word2Vec)在此类NLP业务问题上表现出了良好的性能,但这些模型存在局限性就是使用一个向量对词进行编码而不考虑上下文的不同含义。因此,当试图解决理解用户意图所需的问题时,这些模型可能不能很好地执行。一个例子是,当用户与自动聊天机器人交互时,它试图理解用户查询的意图并准确地提供响应。
deephub
2021/04/16
6.4K0
金融/语音/音频处理学术速递[7.9]
【1】 On the Selection of Loss Severity Distributions to Model Operational Risk 标题:论操作风险建模中损失严重性分布的选择
公众号-arXiv每日学术速递
2021/07/27
4670
vue中v-on支持的事件总结
checking downloading error noupdate obsolete updateready
samRsa
2025/02/24
580
谷歌发表的史上最强NLP模型BERT的官方代码和预训练模型可以下载了
TensorFlow code and pre-trained models for BERT https://arxiv.org/abs/1810.04805
AINLP
2019/10/10
3.3K0
金融/语音/音频处理学术速递[9.3]
【1】 Detection of Structural Regimes and Analyzing the Impact of Crude Oil Market on Canadian Stock Market: Markov Regime-Switching Approach 标题:结构体制检测与原油市场对加拿大股市影响分析:马尔科夫体制转换方法 链接:https://arxiv.org/abs/2109.01046
公众号-arXiv每日学术速递
2021/09/16
6260
Sensory TSSV - TrulySecureSpeakerVerificatio
TSSV-面向硬件设备和应用的嵌入式的和简单的安全验证(Secure Authentication)技术。
用户6026865
2020/08/17
6580
Sensory  TSSV - TrulySecureSpeakerVerificatio
What Should You Expect from ChatGPT
ChatGPT has several features that were unavailable in previous versions of the GPT-3 large language model.
用户6026865
2023/03/03
2790
What Should You Expect from ChatGPT
Auto Makers Are Expanding Voice Controls for Drivers
Auto Makers Are Expanding Voice Controls for Drivers. Cars Will Talk More, Too.
用户6026865
2023/03/03
3260
Auto Makers Are Expanding Voice Controls for Drivers
【论文推荐】最新六篇机器翻译相关论文—综述、卷积Encoder-Decoder神经网络、字翻译、自编码器、神经短语、RNNs
【导读】专知内容组整理了最近六篇机器翻译(Machine Translation)相关文章,为大家进行介绍,欢迎查看! 1. Machine Translation Using Semantic Web Technologies: A Survey(使用语义Web技术的机器翻译:综述) ---- ---- 作者:Diego Moussallem,Matthias Wauer,Axel-Cyrille Ngonga Ngomo 摘要:A large number of machine translati
WZEARW
2018/04/16
1.3K0
【论文推荐】最新六篇机器翻译相关论文—综述、卷积Encoder-Decoder神经网络、字翻译、自编码器、神经短语、RNNs
相关推荐
Sensory发布嵌入式THF&TNL V6.18.1版本
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档