前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从NLP视角看电视剧《狂飙》,会有什么发现?

从NLP视角看电视剧《狂飙》,会有什么发现?

原创
作者头像
风兮177
修改2023-03-03 14:59:27
1.1K0
修改2023-03-03 14:59:27
举报
文章被收录于专栏:风兮NLP

作者:风兮

建议查看原文:https://mp.weixin.qq.com/s/nURcYKN6vRBKjbMXAUbEng


关键词:爬虫、文本数据预处理、数据分析、可视化、自然语言处理

摘要:本文主要内容,获取解析豆瓣《狂飙》的短评相关数据和演职员信息,在数据预处理后,进行简单的数据分析和可视化展示。

本文全部代码路径: https://github.com/fengxi177/pnlp2023/tree/main/chapter_1


1、背景

前文《文本数据预处理:可能需要关注这些点》分享了关于文本预处理的理论知识,本文将分享一份示例demo。正好,碰到了热议的电视剧《狂飙》。因此,本文打算从自然语言处理、数据分析和可视化的角度来凑个热闹(原本计划在大结局当天发出来文章,可惜,大结局有一段时间了。拖延了,哈哈哈)。

2、数据获取

既然要做电视剧《狂飙》相关的nlp数据分析,那么就先选定数据目标站。经过一圈搜寻对比,发现还是豆瓣中的评论更为客观,参与群体数量多,见解更丰富专业,哈哈哈。因此,本文将获取

https://movie.douban.com/subject/35465232/

页面中的相关数据。

截止2023年2月28日,豆瓣中电视剧《狂飙》的短评已经22w+(2023年2月6日13w+,评论热度依然很高)。通过翻看短评数据,可以发现不登录状态最多可以获取220条数据,登录后最多可以获取600条数据。一般,可以通过cookie和selenium的方式实现登录,网上有参考教程,自行搜集。

不过,在不登录状态下,通过URL参数设置分析,发现各参数下都可以获得220条数据。因此,本文只获取不登录状态下的数据。具体的,通过好评、中评和差评参数percent_type设置分别获取220条短评及其相关数据。(特别的,仔细观察URL的参数设置还可以获得更多的数据哦。)

代码语言:javascript
复制

def parse_comments(url):
    """
        解析HTML页面,获得评论及相关数据
    :param url:
    :return:
    """
    html = get_html(url)
    soup_comment = BeautifulSoup(html, 'html.parser')

    # 所有获取的一页数据
    data_page = []

    # 提取评论
    comments_all = soup_comment.findAll("div", "comment-item")
    for comments in comments_all:
        try:
            # 解析评论及相关数据
            comment_info = comments.find("span", "comment-info")  # 评论id相关信息
            comment_vote = comments.find("span", "comment-vote")  # 评论点赞信息
            comment_content = comments.find("span", "short").text.replace("\n", "")  # 评论内容

            # 提取需要的各字段信息
            info_list = comment_info.findAll("span")
            star_rating = info_list[1]

            user_name = comment_info.find("a").text
            video_status = info_list[0].text  # 电视剧观看状态
            comment_score = int(star_rating["class"][0][-2:])  # 评论分值
            comment_level = star_rating["title"]  # 评论等级
            comment_time = info_list[2].text.replace("\n", "").replace("    ", "")  # 评论时间
            # print(info_list)
            comment_location = info_list[3].text  # 评论位置

            comment_vote_count = int(comment_vote.find("span", "votes vote-count").text)  # 评论被点赞数

            # 获取的一条数据
            # ["用户名", "电视剧观看状态", "评论分数", "评论等级", "评论时间", "评论位置", "评论点赞数", "评论"]
            data_row = [user_name, video_status, comment_score, comment_level,
                        comment_time, comment_location,
                        comment_vote_count, comment_content]
            data_page.append(data_row)
        except:
            # 跳过解析异常的数据
            continue

    return data_page

完整代码:请查看get_comments_data.py文件

此外,本文还获取了《狂飙》的演职员信息数据,页面解析的代码片段如下。

代码语言:javascript
复制

    html = get_html(url)
    soup_info = BeautifulSoup(html, 'html.parser')

    # 获得的结果信息
    result_info_dict = {}

    # 提取评论
    info_all = soup_info.findAll("div", "info")
    for info in info_all:
        info_name = info.find("span", "name").text
        info_role = info.find("span", "role").text
        info_works_list = info.find("span", "works").findAll("a")

完整代码:请查看get_celebrity_info.py文件。

3、文本分析与可视化

3.1 短评数据预处理

文本数据预处理的详细介绍,可以参考文章文本数据预处理:可能需要关注这些点。在实际的应用分析中,数据预处理并不是等数据完全收集完毕后一蹴而就的。通常,在合适的时候进行必要的处理是十分必要的,比如本文在解析爬取数据的时候会进行一些替换和数据转换操作。

3.2 词云图可视化

词云图作为一种直观、简洁、易于理解的数据可视化方法,通过词云图文字大小、颜色、字体等方式的展示,人们可以迅速了解文本数据中的关键词和主题等有用信息。

本文利用pyecharts生成短评的词云图,其他也可以通过wordcloud包绘制词云图。特别的,可以通过背景图设置生成各种形状的词云图。

词云图
词云图

3.3 top关键词共现矩阵网络

文本中关键词是很重要的特征,关键词共现矩阵网络是一组文本中词或短语之间的共现关系网。该网络可以帮助我们发现文本中的潜在主题、领域和关联性,也可以用于文本数据可视化和分析。共现网络中,每个关键词被表示为一个节点,词之间的共现关系被表示为边,关键词之间的共现频率表示权重。我们可以使用网络分析算法挖掘文本中的相关主题和模式。

利用pyecharts可视化短评top 2000关键词的词共现结果如图所示。

Gephi是一个常用的网络分析和可视化软件,本文同时用gephi可视化了一组top 2000关键词的词共现关系图如下。

Gephi可视化结果1
Gephi可视化结果1
Gephi可视化结果2
Gephi可视化结果2

3.4 《狂飙》演职员图谱构建

知识图谱是一种将实体、属性、关系等知识以图谱的形式进行表示和存储的技术,可以帮助人们更加直观地了解知识的关联和组织方式。在影视、音乐、文学等领域,知识图谱也被广泛应用于作品分析、人物关系探究方面。

知识图谱的构建需要经过多个阶段,包括实体识别、关系抽取、实体链接等步骤。本文通过爬取《狂飙》的演职员信息,进行数据清洗和处理后,使用pyecharts构建了一个包含演员、导演、编剧、代表作、《狂飙》中的饰演人物等实体,以及他们之间关系的《狂飙》演职员知识图谱,用于展示演职员、作品及饰演人物之间的关系。通过图谱关系展示,可以直观的了解到演员、导演、编剧等之间的合作关系。这些关系的分析可以帮助我们更好地了解影视行业的人际关系网络,感兴趣的朋友可以继续扩展该图谱,探索更多的应用场景。

《狂飙》演职员关系图谱(全部)
《狂飙》演职员关系图谱(全部)
《狂飙》演职员关系图谱(姓名->角色)
《狂飙》演职员关系图谱(姓名->角色)
《狂飙》演职员关系图谱(姓名->代表作)
《狂飙》演职员关系图谱(姓名->代表作)

图谱构建的代码如下:

代码语言:javascript
复制
def generate_celebrity_graph():
    """
        构建演职员关系图谱
    :return:
    """
    df = pd.read_csv("./data/狂飙演职员信息表.csv")
    data = df.values.tolist()

    # 转换格式
    nodes = []
    links = []
    nodes_name = []

    symbolSize_dict = {"姓名": 30, "角色": 20, "饰演人物": 20, "代表作": 20}
    categories = [{"name": x} for x in symbolSize_dict.keys()]

    for row in data:
        # 姓名、角色(";"分割多个)、饰演人物(可能为空)、代表作(";"分割多个)
        name, role, role_to_play, works = row
        role_list = role.split(";")
        works_list = works.split(";")

        if name not in nodes_name:
            nodes_name.append(name)
            # 一个节点
            node = {
                "name": name,
                "symbolSize": symbolSize_dict["姓名"],
                "category": "姓名",
            }
            nodes.append(node)

        for role_temp in role_list:
            if role_temp not in nodes_name:
                nodes_name.append(role_temp)
                node = {
                    "name": role_temp,
                    "symbolSize": symbolSize_dict["角色"],
                    "category": "角色",
                }
                nodes.append(node)

            link = {
                "source": name,
                "target": role_temp
            }
            links.append(link)

            if role_temp == "演员":
                if role_to_play not in nodes_name:
                    nodes_name.append(role_to_play)
                    node = {
                        "name": role_to_play,
                        "symbolSize": symbolSize_dict["饰演人物"],
                        "category": "饰演人物",
                    }
                    nodes.append(node)

                link = {
                    "source": name,
                    "target": role_to_play
                }
                links.append(link)

        for works_temp in works_list:
            if works_temp not in nodes_name:
                nodes_name.append(works_temp)
                if works_temp == "狂飙":
                    node = {
                        "name": works_temp,
                        "symbolSize": 50,  # 特别设置
                        "category": "代表作",
                    }
                else:
                    node = {
                        "name": works_temp,
                        "symbolSize": symbolSize_dict["代表作"],
                        "category": "代表作",
                    }
                nodes.append(node)

            link = {
                "source": name,
                "target": works_temp
            }
            links.append(link)

    c = (
        Graph(init_opts=opts.InitOpts(theme=ThemeType.CHALK, width="1500px", height="1000px"))
        .add(
            "",
            nodes,
            links,
            categories,
            repulsion=1000,
            linestyle_opts=opts.LineStyleOpts(curve=0.6),
        )
        .set_global_opts(
            legend_opts=opts.LegendOpts(pos_left=100, pos_top=350, orient="vertical"),
            title_opts=opts.TitleOpts(title="人物关系图谱"),
        )
        .render("./result/演职员图谱.html")
    )
    print("演职员关系图谱,保存路径为:./result/演职员图谱.html")

4、短评相关数据分析与可视化

在获取评论的时候,顺便获取了关于评分、评论时间、评论位置和评论点赞数等相关数据。本文对评论位置与评论数量进行了统计分析,并将结果利用pyecharts进行了可视化展示。由柱状图可以直观看到获取评论数据量与地域之间的分布。此外,如感兴趣,还可以对“评分与时间”、“评分与位置”、“评分与点赞数”等关系进行分析,绘制折线图、饼图、地图等可视化效果。

位置与评论数量关系
位置与评论数量关系

5、总结

本文通过获取和解析豆瓣电视剧《狂飙》的短评和演职员信息,对这部电影进行了简单的数据分析和可视化展示。感兴趣的朋友,可以继续发散思维、扩展数据,探索发现更多的数据分析和可视化结果。


欢迎关注:实用自然语言处理

原文首发于:https://mp.weixin.qq.com/s/nURcYKN6vRBKjbMXAUbEng


原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、背景
  • 2、数据获取
  • 3、文本分析与可视化
    • 3.1 短评数据预处理
      • 3.2 词云图可视化
        • 3.3 top关键词共现矩阵网络
          • 3.4 《狂飙》演职员图谱构建
          • 4、短评相关数据分析与可视化
          • 5、总结
          相关产品与服务
          腾讯云图数据可视化
          腾讯云图数据可视化(Tencent Cloud Visualization) 是一站式数据可视化展示平台,旨在帮助用户快速通过可视化图表展示大量数据,低门槛快速打造出专业大屏数据展示。精心预设多种行业模板,极致展示数据魅力。采用拖拽式自由布局,全图形化编辑,快速可视化制作。腾讯云图数据可视化支持多种数据来源配置,支持数据实时同步更新,同时基于 Web 页面渲染,可灵活投屏多种屏幕终端。
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档