首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >分享一个趣味性十足的Python可视化技巧

分享一个趣味性十足的Python可视化技巧

作者头像
用户6888863
发布2023-03-01 19:31:46
发布2023-03-01 19:31:46
5950
举报
文章被收录于专栏:AI篮球与生活AI篮球与生活

今天小编来为大家分享一个有趣的可视化技巧,如何从图片中提取颜色然后绘制成可视化图表,如下图所示

在示例照片当中有着各种各样的颜色,我们将通过Python中的可视化模块以及opencv模块来识别出图片当中所有的颜色要素,并且将其添加到可视化图表的配色当中

导入模块并加载图片

那么按照惯例,第一步一般都是导入模块,可视化用到的模块是matplotlib模块,我们将图片中的颜色抽取出来之后会保存在颜色映射表中,所以要使用到colormap模块,同样也需要导入进来

代码语言:javascript
复制
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.image as mpimg

from PIL import Image
from matplotlib.offsetbox import OffsetImage, AnnotationBbox

import cv2
import extcolors
from colormap import rgb2hex

然后我们先来加载一下图片,代码如下

代码语言:javascript
复制
input_name = 'test_1.png'
img = plt.imread(input_name)
plt.imshow(img)
plt.axis('off')
plt.show()

output

提取颜色并整合成表格

我们调用的是extcolors模块来从图片中提取颜色,输出的结果是RGB形式呈现出来的颜色,代码如下

代码语言:javascript
复制
colors_x = extcolors.extract_from_path(img_url, tolerance=12, limit = 12)
colors_x

output

代码语言:javascript
复制
([((3, 107, 144), 180316),
  ((17, 129, 140), 139930),
  ((89, 126, 118), 134080),
  ((125, 148, 154), 20636),
  ((63, 112, 126), 18728),
  ((207, 220, 226), 11037),
  ((255, 255, 255), 7496),
  ((28, 80, 117), 4972),
  ((166, 191, 198), 4327),
  ((60, 150, 140), 4197),
  ((90, 94, 59), 3313),
  ((56, 66, 39), 1669)],
 538200)

我们将上述的结果整合成一个DataFrame数据集,代码如下

代码语言:javascript
复制
def color_to_df(input_color):
    colors_pre_list = str(input_color).replace('([(', '').split(', (')[0:-1]
    df_rgb = [i.split('), ')[0] + ')' for i in colors_pre_list]
    df_percent = [i.split('), ')[1].replace(')', '') for i in colors_pre_list]

    # 将RGB转换成十六进制的颜色
    df_color_up = [rgb2hex(int(i.split(", ")[0].replace("(", "")),
                           int(i.split(", ")[1]),
                           int(i.split(", ")[2].replace(")", ""))) for i in df_rgb]

    df = pd.DataFrame(zip(df_color_up, df_percent), columns=['c_code', 'occurence'])
    return df

我们尝试调用上面我们自定义的函数,输出的结果至DataFrame数据集当中

代码语言:javascript
复制
df_color = color_to_df(colors_x)
df_color

output

绘制图表

接下来便是绘制图表的阶段了,用到的是matplotlib模块,代码如下

代码语言:javascript
复制
fig, ax = plt.subplots(figsize=(90,90),dpi=10)
wedges, text = ax.pie(list_precent,
                      labels= text_c,
                      labeldistance= 1.05,
                      colors = list_color,
                      textprops={'fontsize': 120, 'color':'black'}
                     )
plt.setp(wedges, width=0.3)
ax.set_aspect("equal")
fig.set_facecolor('white')
plt.show()

output

从出来的饼图中显示了每种不同颜色的占比,我们更进一步将原图放置在圆环当中,

代码语言:javascript
复制
imagebox = OffsetImage(img, zoom=2.3)
ab = AnnotationBbox(imagebox, (0, 0))
ax1.add_artist(ab)

output

最后制作一张调色盘,将原图中的各种不同颜色都罗列开来,代码如下

代码语言:javascript
复制
## 调色盘
x_posi, y_posi, y_posi2 = 160, -170, -170
for c in list_color:
    if list_color.index(c) <= 5:
        y_posi += 180
        rect = patches.Rectangle((x_posi, y_posi), 360, 160, facecolor = c)
        ax2.add_patch(rect)
        ax2.text(x = x_posi+400, y = y_posi+100, s = c, fontdict={'fontsize': 190})
    else:
        y_posi2 += 180
        rect = patches.Rectangle((x_posi + 1000, y_posi2), 360, 160, facecolor = c)
        ax2.add_artist(rect)
        ax2.text(x = x_posi+1400, y = y_posi2+100, s = c, fontdict={'fontsize': 190})

ax2.axis('off')
fig.set_facecolor('white')
plt.imshow(bg)       
plt.tight_layout()

output

实战环节

这一块儿是实战环节,我们将上述所有的代码封装成一个完整的函数

代码语言:javascript
复制
def exact_color(input_image, resize, tolerance, zoom):
    
    output_width = resize
    img = Image.open(input_image)
    if img.size[0] >= resize:
        wpercent = (output_width/float(img.size[0]))
        hsize = int((float(img.size[1])*float(wpercent)))
        img = img.resize((output_width,hsize), Image.ANTIALIAS)
        resize_name = 'resize_'+ input_image
        img.save(resize_name)
    else:
        resize_name = input_image
    
    fig.set_facecolor('white')
    ax2.axis('off')
    bg = plt.imread('bg.png')
    plt.imshow(bg)       
    plt.tight_layout()
    return plt.show()
    
exact_color('test_2.png', 900, 12, 2.5)

output

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-06-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 关于数据分析与可视化 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 导入模块并加载图片
  • 提取颜色并整合成表格
  • 绘制图表
  • 实战环节
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档