Loading [MathJax]/jax/input/TeX/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >机器学习: Label vs. One Hot Encoder

机器学习: Label vs. One Hot Encoder

作者头像
数据科学工厂
发布于 2023-02-27 05:27:12
发布于 2023-02-27 05:27:12
72900
代码可运行
举报
运行总次数:0
代码可运行

如果您是机器学习的新手,您可能会对这两者感到困惑——Label 编码器和 One-Hot 编码器。这两个编码器是 Python 中 SciKit Learn 库的一部分,它们用于将分类数据或文本数据转换为数字,我们的预测模型可以更好地理解这些数字。今天,本文[1]通过一个简单的例子来了解一下两者的区别。

1. Label Encoding

首先,您可以在此处找到 Label Encoder 的 SciKit Learn 文档。现在,让我们考虑以下数据:

在本例中,第一列是国家列,全是文本。正如您现在可能知道的那样,如果我们要在数据上运行任何类型的模型,我们就不能在数据中包含文本。因此,在我们运行模型之前,我们需要为模型准备好这些数据。

为了将这种分类文本数据转换为模型可理解的数值数据,我们使用了标签编码器类。因此,要对第一列进行标签编码,我们所要做的就是从 sklearn 库中导入 LabelEncoder 类,拟合并转换数据的第一列,然后用新的编码数据替换现有的文本数据。让我们看一下代码。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
x[:, 0] = labelencoder.fit_transform(x[:, 0])

我们假设数据在一个名为“x”的变量中。运行这段代码后,如果您检查 x 的值,您会看到第一列中的三个国家已被数字 0、1 和 2 替换。

这就是标签编码的全部内容。但是根据数据,标签编码引入了一个新问题。例如,我们将一组国家名称编码为数字数据。这实际上是分类数据,行之间没有任何关系。

这里的问题是,由于同一列中有不同的数字,模型会误解数据的某种顺序,0 < 1 < 2。但事实并非如此。为了克服这个问题,我们使用 One Hot Encoder。

2. One Hot Encoder

现在,正如我们已经讨论过的,根据我们拥有的数据,我们可能会遇到这样的情况:在标签编码之后,我们可能会混淆我们的模型,认为列中的数据具有某种顺序或层次结构,而实际上我们显然不这样做没有它。为避免这种情况,我们对该列进行“OneHotEncode”。

One Hot Encoder 的作用是,它需要一个具有分类数据的列,该列已经过标签编码,然后将该列拆分为多个列。这些数字将替换为 1 和 0,具体取决于哪一列具有什么值。在我们的示例中,我们将获得三个新列,每个国家一列 - 法国、德国和西班牙。

对于第一列值为法国的行,“法国”列将为“1”,其他两列将为“0”。同样,对于第一列值为 Germany 的行,“Germany”列的值为“1”,其他两列的值为“0”。

One Hot Encoder 的 Python 代码也非常简单:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from sklearn.preprocessing import OneHotEncoder
onehotencoder = OneHotEncoder(categorical_features = [0])
x = onehotencoder.fit_transform(x).toarray()

正如您在构造函数中看到的,我们指定哪一列必须进行 One Hot Encoder,在本例中为 [0]。然后我们用我们刚刚创建的 one hot encoder 对象拟合和转换数组“x”。就是这样,我们的数据集中现在有了三个新列:

如您所见,我们有三个新列,分别为 1 和 0,具体取决于行代表的国家/地区。

这就是 Label Encoding 和 One Hot Encoding 之间的区别。


参考资料

[1]

Source: https://contactsunny.medium.com/label-encoder-vs-one-hot-encoder-in-machine-learning-3fc273365621

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-01-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 冷冻工厂 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
100天机器学习实践之第1天
练习中,这两个重要的库每次都要导入。Numpy包含数学函数,Pandas用于导入和管理数据集。
fanzhh
2019/08/20
7190
机器学习第3天:多元线性回归
简单线性回归:影响Y的因素唯一,只有一个。 多元线性回归:影响Y的因数不唯一,有多个。
K同学啊
2019/01/22
8150
特征工程系列:特征预处理(下)
关于作者:JunLiang,一个热爱挖掘的数据从业者,勤学好问、动手达人,期待与大家一起交流探讨机器学习相关内容~
木东居士
2019/08/16
2.5K0
特征工程系列:特征预处理(下)
6个步骤搞定金融数据挖掘预处理
数据预处理没有标准的流程,通常针对不同的任务和数据集属性的不同而不同。下面就一起看下常用六大步完成数据预处理。其中数据获取可以参考金融数据准备。
数据STUDIO
2021/06/24
1.6K0
Kaggle知识点:类别特征处理
类别型特征(categorical feature)主要是指职业,血型等在有限类别内取值的特征。它的原始输入通常是字符串形式,大多数算法模型不接受数值型特征的输入,针对数值型的类别特征会被当成数值型特征,从而造成训练的模型产生错误。
Coggle数据科学
2022/05/05
1.6K0
Kaggle知识点:类别特征处理
机器学习第1天:数据预处理
strategy取值支持三种,mean(均值),median(中位数),most_frequent(众数),默认mean,axis=0表示按列进行
K同学啊
2019/01/22
8880
LabelEncoder(标签编码)与One—Hot(独热编码)
在做Kaggle项目的时候,碰到的问题,通常拿到一个比赛项目,将特征分为数字型特征和文字性特征,分别进行处理,而对于文字型特征如何处理,这时就需要用LabelEncoder(标签编码)和One—Hot(独热编码)将其转换为相应的数字型特征,再进行相应的处理。 首先了解机器学习中的特征类别:连续型特征和离散型特征
用户5745385
2019/07/04
10K0
LabelEncoder(标签编码)与One—Hot(独热编码)
6个步骤教你金融数据挖掘预处理
数据预处理没有标准的流程,通常针对不同的任务和数据集属性的不同而不同。下面就一起看下常用六大步完成数据预处理。
陈晨135
2021/12/31
5680
6个步骤教你金融数据挖掘预处理
机器学习100天|Day1数据预处理
http://scikit-learn.org/stable/modules/preprocessing.html#preprocessing
Ai学习的老章
2019/04/08
5160
机器学习100天|Day1数据预处理
机器学习之sklearn基础教程
在使用sklearn进行机器学习之前,需要对数据进行预处理。sklearn提供了一系列的数据预处理工具,如StandardScaler用于特征缩放,OneHotEncoder用于处理类别特征等。
公众号:码到三十五
2024/06/03
3430
机器学习之sklearn基础教程
从零到一构建AI项目实战教程第四篇:数据分割与标签编码的深入实践
在人工智能项目中,数据预处理是至关重要的一步,其中数据分割与标签编码更是不可或缺。合理的数据分割能够确保模型在训练过程中不会过拟合,同时验证集和测试集能够帮助我们评估模型的性能。而标签编码则是将分类数据转换为模型能够理解的数值形式。本文将详细介绍训练集、验证集、测试集的划分方法,以及One-Hot Encoding和Label Encoding两种常见的标签编码方式。
china马斯克
2025/01/14
2100
机器学习归一化特征编码
因为对于大多数的机器学习算法和优化算法来说,将特征值缩放到相同区间可以使得获取性能更好的模型。就梯度下降算法而言,例如有两个不同的特征,第一个特征的取值范围为1——10,第二个特征的取值范围为1——10000。在梯度下降算法中,代价函数为最小平方误差函数,所以在使用梯度下降算法的时候,算法会明显的偏向于第二个特征,因为它的取值范围更大。在比如,k近邻算法,它使用的是欧式距离,也会导致其偏向于第二个特征。对于决策树和随机森林以及XGboost算法而言,特征缩放对于它们没有什么影响。
@小森
2024/06/15
1430
机器学习归一化特征编码
如何在 Python 中将分类特征转换为数字特征?
在机器学习中,数据有不同的类型,包括数字、分类和文本数据。分类要素是采用一组有限值(如颜色、性别或国家/地区)的特征。但是,大多数机器学习算法都需要数字特征作为输入,这意味着我们需要在训练模型之前将分类特征转换为数字特征。
很酷的站长
2023/08/11
1.1K0
如何在 Python 中将分类特征转换为数字特征?
【Python】机器学习之数据清洗
数据清洗,是数据分析的星光耀眼的序幕,因为原始数据集可能蕴含各种幽灵,而这些隐患将影响最终分析和建模的辉煌表演。通过巧妙的数据清洗,数据的可靠性得以提升,为分析和模型的绚丽演绎打下坚实基石。
SarPro
2024/02/20
3120
【Python】机器学习之数据清洗
数据清洗&amp;预处理入门完整指南
数据预处理是建立机器学习模型的第一步(也很可能是最重要的一步),对最终结果有决定性的作用:如果你的数据集没有完成数据清洗和预处理,那么你的模型很可能也不会有效——就是这么简单。
机器之心
2019/03/08
1.1K0
特征工程中的缩放和编码的方法总结
数据预处理是机器学习生命周期的非常重要的一个部分。特征工程又是数据预处理的一个重要组成, 最常见的特征工程有以下一些方法:
deephub
2022/11/11
1.2K0
特征工程中的缩放和编码的方法总结
【Kaggle】Intermediate Machine Learning(缺失值+文字特征处理)
1. Introduction 按照教程给的7个特征,给定5种参数下的随机森林模型,选出mae误差最小的,进行提交 import pandas as pd from sklearn.model_selection import train_test_split # Read the data X_full = pd.read_csv('../input/train.csv', index_col='Id') X_test_full = pd.read_csv('../input/test.csv', in
Michael阿明
2020/07/13
6080
100天搞定机器学习|Day3多元线性回归
第二天100天搞定机器学习|Day2简单线性回归分析,我们学习了简单线性回归分析,这个模型非常简单,很容易理解。实现方式是sklearn中的LinearRegression,我们也学习了LinearRegression的四个参数,fit_intercept、normalize、copy_X、n_jobs。然后介绍了LinearRegression的几个用法,fit(X,y)、predict(X)、score(X,y)。最后学习了matplotlib.pyplot将训练集结果和测试集结果可视化。
Ai学习的老章
2019/04/08
6440
100天搞定机器学习|Day3多元线性回归
11个常见的分类特征的编码技术
器学习算法只接受数值输入,所以如果我们遇到分类特征的时候都会对分类特征进行编码,本文总结了常见的11个分类变量编码方法。
deephub
2023/01/18
1.2K0
Python中应用决策树算法预测客户等级
机器学习越来越多地在企业应用,本文跟大家分享一个采用python,应用决策树算法对跨国食品超市顾客等级进行预测的具体案例。
阿黎逸阳
2021/01/11
1.5K0
Python中应用决策树算法预测客户等级
相关推荐
100天机器学习实践之第1天
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验