翻译及二次校对:cvtutorials.com
目标
在本章中,我们将学习直方图反投影的知识。
理论
它是由Michael J. Swain和Dana H. Ballard在他们的论文中提出的,通过颜色直方图进行索引。
简单地说,它到底是什么?它用于图像分割或寻找图像中感兴趣的对象。简单地说,它创建了一个与我们的输入图像相同大小(但为单通道)的图像,其中每个像素对应于该像素属于我们的对象的概率。用更简单的话说,输出的图像与其余部分相比,我们感兴趣的对象会有更多的白色。好吧,这就是一个直观的解释。直方图反投影是与camshift算法等一起使用的。
我们怎么做呢?我们创建一个包含我们感兴趣的对象(在我们的例子中,地面、离开的球员和其他东西)的图像的直方图。为了获得更好的效果,物体应该尽可能地填满图像。彩色直方图比灰度直方图更受欢迎,因为物体的颜色比其灰度更能定义物体。然后,我们在需要寻找物体的测试图像上 "反推 "这个直方图,即换句话说,我们计算每个像素属于地面的概率并显示出来。适当的阈值处理后的输出结果单独给了我们地面的信息。
Numpy中的算法
import numpy as np
import cv2 as cvfrom matplotlib import pyplot as plt
#roi is the object or region of object we need to find
roi = cv.imread('rose_red.png')
hsv = cv.cvtColor(roi,cv.COLOR_BGR2HSV)
#target is the image we search in
target = cv.imread('rose.png')
hsvt = cv.cvtColor(target,cv.COLOR_BGR2HSV)
# Find the histograms using calcHist. Can be done with np.histogram2d also
M = cv.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] )
I = cv.calcHist([hsvt],[0, 1], None, [180, 256], [0, 180, 0, 256] )
h,s,v = cv.split(hsvt)
B = R[h.ravel(),s.ravel()]
B = np.minimum(B,1)
B = B.reshape(hsvt.shape[:2])
disc = cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
cv.filter2D(B,-1,disc,B)
B = np.uint8(B)
cv.normalize(B,B,0,255,cv.NORM_MINMAX)
ret,thresh = cv.threshold(B,50,255,0)
OpenCV中的反投影
OpenCV提供了一个内置的函数cv.calcBackproject()。它的参数与cv.calcHist()函数几乎相同。它的一个参数是直方图,这是对象的直方图,我们必须找到它。另外,在传递给backproject函数之前,对象的直方图应该被归一化。它返回的是概率图像。然后我们用圆盘核对图像进行卷积,并应用阈值。下面是我的代码和输出。
import numpy as np
import cv2 as cv
roi = cv.imread('rose_red.png')
hsv = cv.cvtColor(roi,cv.COLOR_BGR2HSV)
target = cv.imread('rose.png')
hsvt = cv.cvtColor(target,cv.COLOR_BGR2HSV)
# calculating object histogram
roihist = cv.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] )
# normalize histogram and apply backprojection
cv.normalize(roihist,roihist,0,255,cv.NORM_MINMAX)
dst = cv.calcBackProject([hsvt],[0,1],roihist,[0,180,0,256],1)
# Now convolute with circular disc
disc = cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
cv.filter2D(dst,-1,disc,dst)
# threshold and binary AND
ret,thresh = cv.threshold(dst,50,255,0)
thresh = cv.merge((thresh,thresh,thresh))
res = cv.bitwise_and(target,thresh)
res = np.vstack((target,thresh,res))
cv.imwrite('res.jpg',res)
下面是我处理的一个例子。我把蓝色矩形内的区域作为样本对象,我想提取整个地面。
其他资源