前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >基于R语言股票市场收益的统计可视化分析|附代码数据

基于R语言股票市场收益的统计可视化分析|附代码数据

原创
作者头像
拓端
发布于 2023-02-07 15:37:36
发布于 2023-02-07 15:37:36
1.9K00
代码可运行
举报
文章被收录于专栏:拓端tecdat拓端tecdat
运行总次数:0
代码可运行

全文链接:http://tecdat.cn/?p=16453 

最近我们被客户要求撰写关于股票市场的研究报告,包括一些图形和统计输出。

金融市场上最重要的任务之一就是分析各种投资的历史收益

要执行此分析,我们需要资产的历史数据。数据提供者很多,有些是免费的,大多数是付费的。在本文中,我们将使用Yahoo金融网站上的数据。

在这篇文章中,我们将:

  1. 下载收盘价
  2. 计算收益率
  3. 计算收益的均值和标准差

让我们先加载库。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
library(tidyquant)library(timetk)

我们将获得Netflix价格的收盘价。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
netflix <- tq_get("NFLX",                    

                  from = '2009-01-01',

                  to = "2018-03-01",

                  get = "stock.prices")

接下来,我们将绘制Netflix的调整后收盘价。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
netflix %>%

  ggplot(aes(x = date, y = adjusted)) +

  geom_line() +

  ggtitle("Netflix since 2009") +

  labs(x = "Date", "Price") +

  scale_x_date(date_breaks = "years", date_labels = "%Y") +

  labs(x = "Date", y = "Adjusted Price") +

  theme_bw()

计算单个股票的每日和每月收益率

一旦我们从Yahoo Finance下载了收盘价,下一步便是计算收益。我们将再次使用tidyquant包进行计算。我们已经在上面下载了Netflix的价格数据,如果您还没有下载,请参见上面的部分。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 计算每日收益netflix_daily_returns <- netflix %>%

  tq_transmute(select = adjusted,          这指定要选择的列

               mutate_fun = periodReturn,   # 这指定如何处理该列               period = "daily",      # 此参数计算每日收益               col_rename = "nflx_returns") # 重命名列#计算每月收益netflix_monthly_returns <- netflix %>%

  tq_transmute(select = adjusted,

               mutate_fun = periodReturn,

               period = "monthly",      # 此参数计算每月收益               col_rename = "nflx_returns")

绘制Netflix的每日和每月收益图表

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 我们将使用折线图获取每日收益



 

  ggplot(aes(x = date, y = nflx_returns)) +

  geom_line() +

  theme_classic() +

查看Netflix的每日收益图表后,我们可以得出结论,收益波动很大,并且股票在任何一天都可以波动+/- 5%。为了了解收益率的分布,我们可以绘制直方图。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
netflix_daily_returns %>%

  ggplot(aes(x = nflx_returns)) +

  geom_histogram(binwidth = 0.015) +

  theme_classic() +

接下来,我们可以绘制自2009年以来Netflix的月度收益率。我们使用条形图来绘制数据。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 绘制Netflix的月度收益图表。 使用条形图





  ggplot(aes(x = date, y = nflx_returns)) +

  geom_bar(stat = "identity") +

  theme_classic() +

计算Netflix股票的累计收益

绘制每日和每月收益对了解投资的每日和每月波动很有用。要计算投资的增长,换句话说,计算投资的总收益,我们需要计算该投资的累积收益。要计算累积收益,我们将使用  cumprod()  函数。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
  mutate(cr = cumprod(1 + nflx_returns)) %>%      # 使用cumprod函数
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
  ggplot(aes(x = date, y = cumulative_returns)) +

  geom_line() +

  theme_classic() +

点击标题查阅往期内容

R语言ARMA GARCH COPULA模型拟合股票收益率时间序列和模拟可视化

左右滑动查看更多

01

02

03

04

该图表显示了自2009年以来Netflix的累计收益。有了事后分析的力量, 自2009年以来,_可以_用1美元的投资赚取85美元。但据我们所知,说起来容易做起来难。在10年左右的时间里,在Qwickster惨败期间投资损失了其价值的50%。在这段时期内,很少有投资者能够坚持投资。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
  ggplot(aes(x = date, y = cumulative_returns)) +

  geom_line() +

  theme_classic() +

我们可以直观地看到,月收益表比日图表要平滑得多。

多只股票

下载多只股票的股票市场数据。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#将我们的股票代码设置为变量



tickers <- c("FB", "AMZN", "AAPL", "NFLX", "GOOG") 



# 下载股价数据



multpl_stocks <- tq_get(tickers,

绘制多只股票的股价图

接下来,我们将绘制多只股票的价格图表

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
multpl_stocks %>%  ggplot(aes(x = date, y = adjusted,

这不是我们预期的结果。由于这些股票具有巨大的价格差异(FB低于165,AMZN高于1950),因此它们的规模不同。我们可以通过按各自的y比例绘制股票来克服此问题。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
  facet_wrap(~symbol, scales = "free_y") +  # facet_wrap用于制作不同的页面

  theme_classic() +

计算多只股票的收益

计算多只股票的收益与单只股票一样容易。这里只需要传递一个附加的参数。我们需要使用参数  group_by(symbol)  来计算单个股票的收益。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#计算多只股票的每日收益                          

  tq_transmute(select = adjusted,

               mutate_fun = periodReturn,

               period = 'daily',

               col_rename = 'returns')#计算多只股票的月收益                            

  tq_transmute(select = adjusted,

               mutate_fun = periodReturn,

               period = 'monthly',

               col_rename = 'returns')

绘制多只股票的收益图表

一旦有了收益计算,就可以在图表上绘制收益。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
multpl_stock_daily_returns %>%

  ggplot(aes(x = date, y = returns)) +

  geom_line() +

  geom_hline(yintercept = 0) +
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
multpl_stock_monthly_returns %>%

  ggplot(aes(x = date, y = return 

  scale_fill_brewer(palette = "Set1",   # 我们会给他们不同的颜色,而不是黑色

在FAANG股票中,苹果的波动最小,而Facebook和Netflix的波动最大。对于他们从事的业务而言,这是显而易见的。Apple是一家稳定的公司,拥有稳定的现金流量。它的产品受到数百万人的喜爱和使用,他们对Apple拥有极大的忠诚度。Netflix和Facebook也是令人难以置信的业务,但它们处于高增长阶段,任何问题(收益或用户增长下降)都可能对股票产生重大影响。

计算多只股票的累计收益

通常,我们希望看到过去哪种投资产生了最佳效果。为此,我们可以计算累积结果。下面我们比较自2013年以来所有FAANG股票的投资结果。哪项是自2013年以来最好的投资?

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
multpl_stock_monthly_returns %>%

  mutate(returns e_returns = cr - 1) %>%

  ggplot(aes(x = date, y = cumulative_returns, color = symbol)) +

  geom_line() +

  labs(x = "Date"

毫不奇怪,Netflix自2013年以来获得了最高的收益。亚马逊和Facebook位居第二和第三。

统计数据

计算单个股票的均值,标准差

我们已经有了Netflix的每日和每月收益数据。现在我们将计算收益的每日和每月平均数和标准差。 为此,我们将使用  mean()  和  sd() 函数。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 计算平均值

 

  .[[1]] %>%  mean(na.rm = TRUE)



nflx_monthly_mean_ret <- netfl turns) %>%  .[[1]] %>%  mean(na.rm = TRUE)



# 计算标准差



nflx_daily_sd_ret <- netflirns) %>%  .[[1]] %>%  sd()



nflx_monthly_sd_ret <- netflix_rns) %>%  .[[1]] %>%  sd()

 nflx_stat
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
## # A tibble: 2 x 3##   period     mean     sd

##   <chr>     <dbl>  <dbl>

## 1 Daily   0.00240 0.0337## 2 Monthly 0.0535  0.176

我们可以看到Netflix的平均每日收益为0.2%,标准差为3.3%。它的月平均回报率是5.2%和17%标准差。该数据是自2009年以来的整个时期。如果我们要计算每年的均值和标准差,该怎么办。我们可以通过按年份对Netflix收益数据进行分组并执行计算来进行计算。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
netflix  %>%

  summarise(Monthly_Mean_Returns = mean(nflx_returns),

            MOnthly_Standard_Deviation = sd(nflx_returns)
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
## # A tibble: 10 x 3##     year Monthly_Mean_Returns MOnthly_Standard_Deviation

##    <dbl>                <dbl>                      <dbl>

##  1  2009              0.0566                      0.0987##  2  2010              0.110                       0.142 

##  3  2011             -0.0492                      0.209 

##  4  2012              0.0562                      0.289 

##  5  2013              0.137                       0.216 

##  6  2014              0.00248                     0.140 

##  7  2015              0.0827                      0.148 

##  8  2016              0.0138                      0.126 

##  9  2017              0.0401                      0.0815## 10  2018              0.243                       0.233

我们还可以绘制结果更好地理解。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
netflix_monthly_returns %>%

  mutate(year = rns, Standard_Deviation, keyistic)) +

  geom_bar(stat = "identity", position = "dodge") +

  scale_y_continuous(b ) +

  theme_bw() +

我们可以看到,自2009年以来,每月收益和标准差波动很大。2011年,平均每月收益为-5%。

计算多只股票的均值,标准差

接下来,我们可以计算多只股票的均值和标准差。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
  group_by(symbol) %>%  summarise(mean = mean(returns),

            sd = sd(returns))
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
## # A tibble: 5 x 3##   symbol     mean     sd

##   <chr>     <dbl>  <dbl>

## 1 AAPL   0.00100  0.0153## 2 AMZN   0.00153  0.0183## 3 FB     0.00162  0.0202## 4 GOOG   0.000962 0.0141## 5 NFLX   0.00282  0.0300
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
group_by(symbol) %>%  summarise(mean = mean(returns),

            sd = sd(returns))
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
## # A tibble: 5 x 3##   symbol   mean     sd

##   <chr>   <dbl>  <dbl>

## 1 AAPL   0.0213 0.0725## 2 AMZN   0.0320 0.0800## 3 FB     0.0339 0.0900## 4 GOOG   0.0198 0.0568## 5 NFLX   0.0614 0.157

计算收益的年均值和标准差。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
   %>%  group_by(symbol, year) %>%  summarise(mean = mean(returns),

            sd = sd(returns))
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
## # A tibble: 30 x 4## # Groups:   symbol [?]

##    symbol  year      mean     sd

##    <chr>  <dbl>     <dbl>  <dbl>

##  1 AAPL    2013  0.0210   0.0954##  2 AAPL    2014  0.0373   0.0723##  3 AAPL    2015 -0.000736 0.0629##  4 AAPL    2016  0.0125   0.0752##  5 AAPL    2017  0.0352   0.0616##  6 AAPL    2018  0.0288   0.0557##  7 AMZN    2013  0.0391   0.0660##  8 AMZN    2014 -0.0184   0.0706##  9 AMZN    2015  0.0706   0.0931## 10 AMZN    2016  0.0114   0.0761## # ... with 20 more rows

我们还可以绘制此统计数据。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
multpl_stock_monthly_returns %>%

  mutate(year = year(date)) %>%

  group_by(symbol, yea s = seq(-0.1,0.4,0.02),

                     labels = scales::percent) +

  scale_x_continuous(breaks = seq(2009,2018,1)) +

  labs(x = "Year", y = Stocks") +

  ggtitle
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
multpl_stock_monthly_returns %>%

  mutate(year = year(date)) %>% 

  ggplot(aes(x = year, y = sd, fill = symbol)) +

  geom_bar(stat = "identity", position = "dodge", width = 0.7) +

  scale_y_continuous(breaks = seq(-0.1,0.4,0.02),

                     labels = scales::p 

  scale_fill_brewer(palette = "Set1",

计算多只股票的协方差和相关性

另一个重要的统计计算是股票的相关性和协方差。为了计算这些统计数据,我们需要修改数据。我们将其转换为xts对象。

协方差表

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#计算协方差



  tk_xts(silent = TRUE) %>%

  cov()
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
##               AAPL        AMZN          FB         GOOG          NFLX

## AAPL  5.254736e-03 0.001488462 0.000699818 0.0007420307 -1.528193e-05## AMZN  1.488462e-03 0.006399439 0.001418561 0.0028531565  4.754894e-03## FB    6.998180e-04 0.001418561 0.008091594 0.0013566480  3.458228e-03## GOOG  7.420307e-04 0.002853157 0.001356648 0.0032287790  3.529245e-03## NFLX -1.528193e-05 0.004754894 0.003458228 0.0035292451  2.464202e-02

相关表

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 计算相关系数



 %>%

  tk_xts(silent = TRUE) %>%

  cor()
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
##              AAPL      AMZN        FB      GOOG         NFLX

## AAPL  1.000000000 0.2566795 0.1073230 0.1801471 -0.001342964## AMZN  0.256679539 1.0000000 0.1971334 0.6276759  0.378644485## FB    0.107322952 0.1971334 1.0000000 0.2654184  0.244905437## GOOG  0.180147089 0.6276759 0.2654184 1.0000000  0.395662114## NFLX -0.001342964 0.3786445 0.2449054 0.3956621  1.000000000

我们可以使用corrplot() 包来绘制相关矩阵图。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
## corrplot 0.84 loaded
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
  cor() %>%  corrplot()


点击文末 “阅读原文”

获取全文完整资料。

本文选自《基于R语言股票市场收益的统计可视化分析》。

点击标题查阅往期内容

ARMA-GARCH-COPULA模型和金融时间序列案例 时间序列分析:ARIMA GARCH模型分析股票价格数据 GJR-GARCH和GARCH波动率预测普尔指数时间序列和Mincer Zarnowitz回归、DM检验、JB检验 【视频】时间序列分析:ARIMA-ARCH / GARCH模型分析股票价格 时间序列GARCH模型分析股市波动率 PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化 极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析 Garch波动率预测的区制转移交易策略 金融时间序列模型ARIMA 和GARCH 在股票市场预测应用 时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格 R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据 R语言GARCH建模常用软件包比较、拟合标准普尔SP 500指数波动率时间序列和预测可视化 Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用 MATLAB用GARCH模型对股票市场收益率时间序列波动的拟合与预测R语言GARCH-DCC模型和DCC(MVT)建模估计 Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列 R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格 R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列 Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测 R语言时间序列GARCH模型分析股市波动率 R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测 matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计 Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 R语言用多元ARMA,GARCH ,EWMA, ETS,随机波动率SV模型对金融时间序列数据建模 R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析 R语言多元Copula GARCH 模型时间序列预测 R语言使用多元AR-GARCH模型衡量市场风险 R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格 R语言用Garch模型和回归模型对股票价格分析 GARCH(1,1),MA以及历史模拟法的VaR比较 matlab估计arma garch 条件均值和方差模型R语言POT超阈值模型和极值理论EVT分析

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
图解机器学习 | 机器学习基础知识
教程地址:http://www.showmeai.tech/tutorials/34
ShowMeAI
2022/03/09
7980
图解机器学习 | 机器学习基础知识
机器学习简介
标题: 机器学习定义 人工智能、机器学习、深度学习的关系 机器学习的学习类别 数据(特征)的种类 几个空间的概念 机器学习的三要素 深度学习的兴起引领了人工智能的有一股热潮,特别是阿尔法狗(AlphaGO)在围棋中战胜了世界冠军之后,各大社交媒体大肆宣传,把深度学习形容的玄乎其玄,人工智能的概念就走进千家万户了。 回到正题,这篇推文旨在为大家普及一下机器学习的概念,以下是机器学习的介绍和定义。 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、
企鹅号小编
2018/02/26
6590
机器学习简介
机器学习,你不得不掌握的十大算法(上篇)
这是小詹关于机器学习的第①篇文章 ● 机器学习及其分类 我们知道,机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 按照学习方式进行分类,机器学习算法可分为监督式学习,非监督式学习和强化学习三种。 ① 监督学习目的是使用有类标的训练数据构建模型,利用训练得到的模型对未来数据进行预测,监督是指训练数据集中每一个
小小詹同学
2018/04/13
6880
机器学习,你不得不掌握的十大算法(上篇)
独家揭秘| 数据挖掘、机器学习和深度学习之间的区别
导读:机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。 机器学习已广泛应
AI科技评论
2018/03/07
1.5K0
独家揭秘| 数据挖掘、机器学习和深度学习之间的区别
图解 72 个机器学习基础知识点
来源:尤而小屋 R语言统计与绘图本文约5500字,建议阅读11分钟本文梳理了机器学习最常见的知识要点。 图解机器学习算法系列 以图解的生动方式,阐述机器学习核心知识 & 重要模型,并通过代码讲通应用细节。 1. 机器学习概述 1)什么是机器学习 人工智能(Artificial intelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它是一个笼统而宽泛的概念,人工智能的最终目标是使计算机能够模拟人的思维方式和行为。 大概在上世纪50年代,人工智能开始
数据派THU
2023/03/29
8110
图解 72 个机器学习基础知识点
TensorFlow系列专题(一):机器学习基础
1956年的8月,美国达特茅斯学院(Dartmouth College)举行了一次研讨会,这次会议由约翰麦卡锡等人发起,会议上约翰麦卡锡首次提出了“人工智能”这个概念,这次会议也被公认为是人工智能诞生的标志。在这六十多年的时间里,人工智能的发展起起伏伏、忽“冷”忽“热”。而2016年AlphaGo与李世石的那场“世纪大战”则彻底点燃了大众的热情。当前人工智能成了一个“香饽饽”,很多国家都在积极争夺人工智能领域的话语权,各大公司也都不断加大在人工智能领域的投入。对于想要转行人工智能领域或者正在从事人工智能领域的从业者来说,当前是一个不折不扣的黄金时代。
磐创AI
2018/11/30
4240
TensorFlow系列专题(一):机器学习基础
走进机器学习:新手必看的完整入门指南
以维基百科为例:机器学习 机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近30多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法(要防止错误累积)。很多推论问题属于非程序化決策,所以部分的机器学习研究是开发容易处理的近似算法。 用一句话来概况就是:机器学习(Machine Learning,简称 ML)是人工智能(AI)的一个子领域,关注于研究如何通过数据来使计算机系统自动改进和学习。与传统的编程方式不同,机器学习通过输入数据来训练模型,模型能够从数据中识别模式,并根据这些模式做出预测或决策,而不需要显式地编程规则。
Yui_
2024/12/20
3340
走进机器学习:新手必看的完整入门指南
机器学习-概述
简单的一句话:让机器从数据中学习,进而得到一个更加符合现实规律的模型,通过对模型的使用使得机器比以往表现的更好,这就是机器学习。
后端码匠
2021/08/19
4440
机器学习基本概念
多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
foochane
2019/05/23
3820
机器学习基本概念
机器学习该如何入门
引言   可能你对这个名字叫“机器学习”的家伙不是特别的了解,但是相信用过iPhone的同学都知道iPhone的语音助手Siri,它能帮你打电话,查看天气等等;相信大家尤其是美女童鞋都用过美颜相机,它能自动化的给我们拍出更漂亮的照片;逛京东淘宝的时候,细心的童鞋应该也会发现它们会有一个栏目“猜你喜欢”;最近异军突起的新闻客户端软件今日头条,它们就是会根据分析你的日常喜好给每个人推荐不同的新闻……没错,这些功能背后的核心就是今天要介绍的主题:机器学习。 什么是机器学习   对于这个问题的解释,说实话我很有压力
机器学习算法工程师
2018/03/06
7880
机器学习该如何入门
机器学习以及相关算法
机器学习是人工智能的一个分支。机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。现实问题抽象为数学问题,机器解决数学问题从而解决现实问题。
分母为零
2020/05/24
6380
机器学习学习笔记(1) -- 简析入门
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科;机器学习是一种偏向于技术的方法,研究目的包括模式识别、神经网络和深度学习;机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法,机器学习算法是一类从数据中自动分析获取规律并利用找到的规律对未知数据进行预测的算法。
挽风
2021/04/13
3410
机器学习:数据驱动的科学
机器学习,也被称为统计机器学习,是人工智能领域的一个分支,其基本思想是基于数据构建统计模型,并利用模型对数据进行分析和预测的一门学科。
博文视点Broadview
2020/06/11
9890
机器学习:数据驱动的科学
1,机器学习简介
人工智能指由人类制造出的机器表现出的智能。这是一个非常大的范围,长远目标是让机器实现类人智能。不过目前我们还在非常非常初级的阶段,甚至都不能称为智能。
lyhue1991
2020/07/20
4710
1,机器学习简介
机器学习
概念 什么是机器学习? 机器学习是英文名称Machine Learning(简称ML)的直译。机器学习涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。 相对于传统的计算机工作,我们给它一串指令,然后它遵照这个指令一步步执行下去即可。机器学习根本不接受你输入的指令,相反,它只
xiangzhihong
2018/01/26
1.1K0
分享 | 震惊,机器学习居然有这些事
机器学习是一类算法的总称,这些算法企图从大量历史数据中挖掘出其中隐含的规律,并用于预测或者分类,更具体的说,机器学习可以看作是一个函数,输入是样本数据,输出是期望的结果,只是这个函数过于复杂,以至于不太方便形式化表达。
潘永斌
2019/10/08
5100
分享 | 震惊,机器学习居然有这些事
【机器学习基础】初探机器学习
  我们生活在一个人工智能的时代!生活中现在已随处可见人工智能技术的影子。在大学的食堂,学生把打好菜的托盘放到摄像头下面,机器就可以自动识别每个餐盘的形状来自动计算这顿饭的价格;而在校园的大部分电梯里,学生可以说例如“我要去3楼”,电梯则可以自动带学生去3楼,这在疫情期间更加方便卫生。或许对于“20后”的孩子们而言,智能就像能源一样从他们记事起就随处可见、随手可得,就像移动互联网之于“10后”一样。
Francek Chen
2025/01/23
860
【机器学习基础】初探机器学习
机器学习系列--KNN分类算法
Dlimeng
2023/06/29
2590
【机器学习】机器学习基础概念与初步探索
综上所述:监督学习、无监督学习与强化学习各有其特点和优势,适用于不同的应用场景。在实际应用中,我们需要根据具体问题和数据特点来选择合适的机器学习类型。
Eternity._
2024/06/14
1340
【机器学习】机器学习基础概念与初步探索
机器学习算法入门
问题导读 1.什么是程序? 2.什么是算法? 3.什么是机器学习算法? 4.机器学习的主要任务是什么? 5.机器学习+数据库=? 6.什么是自然语言处理? 什么是程序(Program) 计算机程序,是指为了得到某种结果而可以由计算机(等具有信息处理能力的装置)执行的代码化指令序列(或者可以被自动转换成代码化指令序列的符号化指令序列或者符号化语句序列)。 通俗讲,计算机给人干活,但它不是人,甚至不如狗懂人的需要(《小羊肖恩》里的狗是多么聪明可爱又忠诚于主人)。那怎么让它干活呢,那就需要程序员用某种编程
用户1410343
2018/03/27
7290
机器学习算法入门
相关推荐
图解机器学习 | 机器学习基础知识
更多 >
LV.0
深圳魔图互联科技有限公司算法工程师
目录
  • 全文链接:http://tecdat.cn/?p=16453 
  • 金融市场上最重要的任务之一就是分析各种投资的历史收益
    • 计算单个股票的每日和每月收益率
    • 绘制Netflix的每日和每月收益图表
    • 计算Netflix股票的累计收益
    • 多只股票
      • 下载多只股票的股票市场数据。
      • 绘制多只股票的股价图
  • 计算多只股票的收益
    • 绘制多只股票的收益图表
    • 计算多只股票的累计收益
  • 统计数据
    • 计算单个股票的均值,标准差
    • 计算多只股票的均值,标准差
    • 计算多只股票的协方差和相关性
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档