首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >工作玩手机识别监测系统

工作玩手机识别监测系统

原创
作者头像
燧机科技
发布于 2023-01-20 16:47:09
发布于 2023-01-20 16:47:09
1.1K0
举报

工作玩手机识别监测系统通过YOLOV5网络深度学习算法模型对画面中人员玩手机行为进行实时监测,当工作玩手机识别监测系统识别到有人在玩手机行为时,无需人为干预工作玩手机识别监测系统立即抓拍存档触发告警。YOLO算法- YOLO算法是一种基于回归的算法,它不是选择图像中有趣的部分,而是预测整个图像中的类和包围框运行一次算法。要理解YOLO算法,我们首先需要了解实际预测的是什么。最终,我们的目标是预测一类对象和指定对象位置的边界框。

我们使用YOLO(你只看一次)算法进行对象检测。YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。

在YOLO系列算法中,针对不同的数据集,都需要设定特定长宽的锚点框。在网络训练阶段,模型在初始锚点框的基础上输出对应的预测框,计算其与GT框之间的差距,并执行反向更新操作,从而更新整个网络的参数,因此设定初始锚点框也是比较关键的一环。在YOLOv3和YOLOv4检测算法中,训练不同的数据集时,都是通过单独的程序运行来获得初始锚点框。YOLOv5中将此功能嵌入到代码中,每次训练时,根据数据集的名称自适应的计算出最佳的锚点框,用户可以根据自己的需求将功能关闭或者打开,具体的指令为parser.add_argument(’–noautoanchor’, action=‘store_ true’, help=‘disable autoanchor check’),如果需要打开,只需要在训练代码时增加–noautoanch or选项即可。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
ai课堂行为分析检测评估
ai课堂行为分析检测评估系统通过yolo网络模型算法,ai课堂行为分析检测评估算法利用摄像头采集学生的图像,视线跟踪技术的智能教学系统由情感模型、教师模型、学生模型和课程模型四个模型组成。用户端的视线及表情信息通过摄像头采集并传递到情感模型情感模型对识别到的表情、行为数据与跟踪得 到的视线所处的知识点处理分析,判断学习者对知识的掌握情况、兴趣与否、专注程度及学习进度,将分析结果一一对应 地传递到学生模型、课程模型、教师模型中,以此为依据对学习内容与学习过程作出相应调整,并及时给予情感补偿。
燧机科技
2023/09/14
7350
ai课堂行为分析检测评估
智慧课堂学生行为检测评估算法
智慧课堂学生行为检测评估算法通过yolov5系列图像识别和行为分析,智慧课堂学生行为检测评估算法评估学生的表情、是否交头接耳行为、课堂参与度以及互动质量,并提供相应的反馈和建议。智慧课堂学生行为检测评估算法能够实时监测学生的上课行为,及时掌握学生的表情和参与度,为教师提供及时的反馈。智慧课堂学生行为检测评估算法中Yolo模型采用一个单独的CNN模型实现end-to-end的目标检测。首先将输入图片resize到448x448,然后送入CNN网络,最后处理网络预测结果得到检测的目标。相比R-CNN算法,其是一个统一的框架,其速度更快,而且Yolo的训练过程也是end-to-end的。
燧机科技
2023/09/15
6930
智慧课堂学生行为检测评估算法
皮带撕裂监测识别系统
皮带撕裂监测识别系统通过yolov5网络模型深度学习技术,皮带撕裂监测识别系统自动对运输机皮带状态进行全天候不间断实时检测,皮带撕裂监测识别系统检测到撕裂跑偏时,皮带撕裂监测识别系统立即抓拍告警及时同步信号给运输机停止运输机。YOLOv5是一个在COCO数据集上预训练的物体检测架构和模型系列,它代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。YOLOv5是YOLO系列的一个延申,可以看作是基于YOLOv3、YOLOv4的改进作品。YOLOv5没有相应的论文说明,但是作者在Github上积极地开放源代码,通过对源码分析,我们也能很快地了解YOLOv5的网络架构和工作原理。
燧机科技
2023/02/16
7260
皮带撕裂监测识别系统
河道非法采砂识别系统
河道非法采砂识别系统通过yolov5网络架构深度学习技术对指定区域进行实时检测,一旦河道非法采砂识别系统检测到人员非法采砂时,无需人工干预系统会自动告警,同步回传监控管理中心,提醒后台相关人员及时处理。YOLO算法- YOLO算法是一种基于回归的算法,它不是选择图像中有趣的部分,而是预测整个图像中的类和包围框运行一次算法。要理解YOLO算法,我们首先需要了解实际预测的是什么。最终,我们的目标是预测一类对象和指定对象位置的边界框。
燧机科技
2022/12/29
7090
河道非法采砂识别系统
渣土车智能识别系统
渣土车智能识别系统通过yolov5网络模型深度学习技术,渣土车智能识别系统对禁止渣土车通行现场画面中含有渣土车时进行自动识别监测,渣土车智能识别系统并自动抓拍告警。YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:输入端,在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错。
燧机科技
2023/02/13
1.3K0
渣土车智能识别系统
人员动作行为AI分析系统
人员动作行为AI分析系统通过python+yolo系列网络学习模型,人员动作行为AI分析系统对现场画面人员行为进行实时分析监测,人员动作行为AI分析系统自动识别出人的各种异常行为动作,人员动作行为AI分析系统立即抓拍存档预警同步回传给后台。 我们使用YOLO算法进行对象检测。YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。
燧机科技
2023/01/26
9250
YOLO算法最全综述:从YOLOv1到YOLOv5
来源丨https://zhuanlan.zhihu.com/p/136382095
Datawhale
2020/10/23
3K0
YOLO算法最全综述:从YOLOv1到YOLOv5
杀疯了!YOLO再突破,提速20倍!!
YOLO再一次突破,新变体YOLO-World在目标检测领域的表现非常的出色。开集检测速度提升20倍!
Python编程爱好者
2024/04/12
1.3K0
杀疯了!YOLO再突破,提速20倍!!
抽烟行为识别预警系统
抽烟行为识别预警系统基于yolov5网络模型智能分析技术,抽烟行为识别预警系统通过监测现场人员抽烟行为自动存档进行报警提示。抽烟行为识别预警系统我们选择当下YOLO卷积神经网络YOLOv5来进行抽烟识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。
燧机科技
2023/04/05
5560
抽烟行为识别预警系统
河道水位识别系统
河道水位识别系统采用yolov5网络模型深度学习技术,河道水位识别系统自动识别水尺位置,河道水位识别系统通过AI图像识别技术将数字与水位线位置结合对别,即可识别出水尺读数。我们使用YOLO(你只看一次)算法进行对象检测。YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。YOLO算法- YOLO算法是一种基于回归的算法,它不是选择图像中有趣的部分,而是预测整个图像中的类和包围框运行一次算法。要理解YOLO算法,我们首先需要了解实际预测的是什么。最终,我们的目标是预测一类对象和指定对象位置的边界框。
燧机科技
2023/03/17
1.1K0
河道水位识别系统
明厨亮灶AI智能分析盒
明厨亮灶AI智能分析盒通过python+yolov5网络模型分析技术,明厨亮灶AI智能分析盒能够迅速高效的识别口罩穿戴、厨师服穿戴、吸烟、厨师帽穿戴、后厨鼠害、玩手机识别等。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。
燧机科技
2023/04/07
3420
明厨亮灶AI智能分析盒
作业区域人数超员预警系统
作业区域人数超员识别检测利用Python基于YOLOv5深度学习模型对现场作业区域进行全天候不间断实时监测,一旦作业区域人数超员预警系统Python基于YOLOv5深度学习模型监测到作业区域人数超员时,立即进行抓拍存档并告知后台监控中心人员。我们选择当下YOLO最新的卷积神经网络YOLOv5来进行人数超员识别检测,YOLOv5是完全基于PyTorch实现的。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。
燧机科技
2022/12/29
3650
作业区域人数超员预警系统
电子封条监控系统 yolov5
电子封条监控系统算法模型利用yoloov5+python 深度学习训练模型技术,电子封条监控系统算法模型实现对画面内外的出入人员、人数变化及非煤矿山生产作业状态等情况的实时监测和分析,及时发现异常动态,减少了人为介入的过程。介绍电子封条监控系统算法模型Yolo算法之前,首先先介绍一下滑动窗口技术,这对我们理解Yolo算法是有帮助的。采用滑动窗口的目标检测算法思路非常简单,它将检测问题转化为了图像分类问题。电子封条监控系统算法模型基本原理就是采用不同大小和比例(宽高比)的窗口在整张图片上以一定的步长进行滑动,然后对这些窗口对应的区域做图像分类,这样就可以实现对整张图片的检测了,如下图3所示,如DPM就是采用这种思路。但是这个方法有致命的缺点,就是你并不知道要检测的目标大小是什么规模,所以你要设置不同大小和比例的窗口去滑动,而且还要选取合适的步长。
燧机科技
2023/09/14
3250
电子封条监控系统 yolov5
从滑动窗口到YOLO、Transformer:目标检测的技术革新
在深度学习方法主导目标检测之前,滑动窗口和特征提取技术在这一领域中发挥了关键作用。通过理解这些技术的基本原理和实现方式,我们可以更好地把握目标检测技术的演进脉络。
TechLead
2023/11/30
4.5K0
从滑动窗口到YOLO、Transformer:目标检测的技术革新
渣土车空车未盖盖识别系统
渣土车空车未盖盖识别系统通过OpenCv+yolo网络实时监控路过的渣土车情况,渣土车空车未盖盖识别系统对没有盖盖或者空车的渣土车进行抓拍。渣土车空车未盖盖识别系统利用城市道路两旁的监控摄像头对交通来往车辆进行识别抓拍,若是空车或者没有盖盖,即会抓拍同步将截图发给后台监控系统平台,提醒后台人员及时处理,避免更大的损失发生。YOLO算法- YOLO算法是一种基于回归的算法,它不是选择图像中有趣的部分,而是预测整个图像中的类和包围框运行一次算法。要理解YOLO算法,我们首先需要了解实际预测的是什么。最终,我们的目标是预测一类对象和指定对象位置的边界框。
燧机科技
2022/12/29
5420
渣土车空车未盖盖识别系统
YOLO家族系列模型的演变:从v1到v8(上)
YOLO V8已经在本月发布了,我们这篇文章的目的是对整个YOLO家族进行比较分析。了解架构的演变可以更好地知道哪些改进提高了性能,并且明确哪些版本是基于那些版本的改进,因为YOLO的版本和变体的命名是目前来说最乱的,希望看完这篇文章之后你能对整个家族有所了解。
deephub
2023/02/01
8.2K0
工厂安全着装识别检测系统
工厂安全着装识别检测系统通过Python基于YOLOv5技术,工厂安全着装识别检测系统对现场画面中的人员着装穿戴进行实时分析检测,工厂安全着装识别检测系统自动抓拍存档告警。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码)。
燧机科技
2023/01/12
3590
工厂安全着装识别检测系统
渣土车识别检测系统
渣土车识别检测系统通过yolo网络架构对现场渣土车进行实时分析检测,一旦渣土车识别检测系统发现渣土车立即抓拍预警,提醒后台人员及时处理。我们使用YOLO(你只看一次)算法进行对象检测。YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。
燧机科技
2022/12/27
9640
渣土车识别检测系统
占道经营出店摆摊监测识别系统
占道经营出店摆摊监测识别系统通过python基于yolov7网络架构深度学习模型对城市街道进行实时监测,无需人为干预。当占道经营出店摆摊监测识别系统监测到有商户出店摆摊违规经营或者流动商贩占道经营时,系统立即告警同步后台监控人员及时处理及时预警。OpenCV基于C++实现,同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python API,结合了OpenCV C++API和Python语言的最佳特性。OpenCV可以在不同的系统平台上使用,包括Windows,Linux,OS,X,Android和iOS。基于CUDA和OpenCL的高速GPU操作接口也在积极开发中。
燧机科技
2022/12/29
5670
占道经营出店摆摊监测识别系统
工人规范操作识别检测 yolov5
工人规范操作识别检测通过yolov5+python网络模型技术,工人规范操作识别检测对工人的操作进行实时监测,当工人规范操作识别系统检测到工人操作不符合规范时,将自动发出警报提示相关人员采取措施。行为检测合规算法中应用到的YOLOv5中在训练模型阶段仍然使用了Mosaic数据增强方法,该算法是在CutMix数据增强方法的基础上改进而来的。CutMix仅仅利用了两张图片进行拼接,而Mosaic数据增强方法则采用了4张图片,并且按照随机缩放、随机裁剪和随机排布的方式进行拼接而成。这种增强方法可以将几张图片组合成一张,这样不仅可以丰富数据集的同时极大的提升网络的训练速度,而且可以降低模型的内存需求。
燧机科技
2023/09/08
4760
工人规范操作识别检测 yolov5
相关推荐
ai课堂行为分析检测评估
更多 >
领券
一站式MCP教程库,解锁AI应用新玩法
涵盖代码开发、场景应用、自动测试全流程,助你从零构建专属AI助手
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档