前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >ICML2022大会论文列表(1)

ICML2022大会论文列表(1)

作者头像
一点人工一点智能
发布2022-12-27 10:11:26
5590
发布2022-12-27 10:11:26
举报
文章被收录于专栏:一点人工一点智能

ICML 是 International Conference on Machine Learning的缩写,即国际机器学习大会。ICML如今已发展为由国际机器学习学会(IMLS)主办的年度机器学习国际顶级会议。

ICML2022共收到5630 篇投稿,其中,1117 篇被接收为short oral,118篇被接收为long oral。接收率为21.94%,与以往几年基本持平。本届大会共评选出15 篇杰出论文奖和 1 项时间检验奖。其中,复旦大学、上海交通大学、厦门大学、莱斯大学等多个华人团队的工作被评位杰出论文奖。ICML 2012 的一篇论文《Poisoning Attacks against Support Vector Machines》获得了时间检验奖。

获奖论文信息详见:https://icml.cc/virtual/2022/awards_detail


01. PAC-Bayesian Bounds on Rate-Efficient Classifiers

作者:Alhabib Abbas,Yiannis Andreopoulos

原文地址:

https://proceedings.mlr.press/v162/abbas22a/abbas22a.pdf

02. Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning

作者:Momin Abbas,Quan Xiao, Lisha Chen, Pin-Yu Chen, Tianyi Chen

原文地址:

https://proceedings.mlr.press/v162/abbas22b/abbas22b.pdf

Github:

https://github.com/mominabbass/sharp-maml

03. An Initial Alignment between Neural Network and Target is Needed for Gradient Descent to Learn

作者:Emmanuel Abbe,Elisabetta Cornacchia, Jan Hazla, Christopher Marquis

原文地址:

https://proceedings.mlr.press/v162/abbe22a/abbe22a.pdf

04. Active Sampling for Min-Max Fairness

作者:Jacob D Abernethy,Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern, Chris Russell, Jie Zhang

原文地址:

https://proceedings.mlr.press/v162/abernethy22a/abernethy22a.pdf

Github:

https://github.com/amazon-research/active-sampling-for-minmax-fairness

05. Meaningfully debugging model mistakes using conceptual counterfactual explanations

作者:Abubakar Abid,Mert Yuksekgonul, James Zou

原文地址:

https://proceedings.mlr.press/v162/abid22a/abid22a.pdf

Github:

https://github.com/mertyg/debug-mistakes-cce

06. Batched Dueling Bandits

作者:Arpit Agarwal,Rohan Ghuge, Viswanath Nagarajan

原文地址:

https://proceedings.mlr.press/v162/agarwal22a/agarwal22a.pdf

07. Hierarchical Shrinkage: Improving the accuracy and interpretability of tree-based models

作者:Abhineet Agarwal,Yan Shuo Tan, Omer Ronen, Chandan Singh, Bin Yu

原文地址:

https://proceedings.mlr.press/v162/agarwal22b/agarwal22b.pdf

Github:

https://github.com/yu-group/imodels-experiments

https://github.com/csinva/imodels

08. Deep equilibrium networks are sensitive to initialization statistics

作者:Atish Agarwala,Samuel S Schoenholz

原文地址:

https://proceedings.mlr.press/v162/agarwala22a/agarwala22a.pdf

09. Learning of Cluster-based Feature Importance for Electronic Health Record Time-series

作者:Henrique Aguiar,Mauro Santos, Peter Watkinson, Tingting Zhu

原文地址:

https://proceedings.mlr.press/v162/aguiar22a/aguiar22a.pdf

10. On the Convergence of the Shapley Value in Parametric Bayesian Learning Games

作者:Lucas Agussurja,Xinyi Xu, Bryan Kian Hsiang Low

原文地址:

https://proceedings.mlr.press/v162/agussurja22a/agussurja22a.pdf

Github:

https://github.com/XinyiYS/Parametric-Bayesian-Learning-Games

11. Individual Preference Stability for Clustering

作者:Saba Ahmadi,Pranjal Awasthi, Samir Khuller, Matthäus Kleindessner, Jamie Morgenstern, Pattara Sukprasert, Ali Vakilian

原文地址:

https://proceedings.mlr.press/v162/ahmadi22a/ahmadi22a.pdf

Github:

https://github.com/amazon-research/ip-stability-for-clustering

12. Understanding the unstable convergence of gradient descent

作者:Kwangjun Ahn,Jingzhao Zhang, Suvrit Sra

原文地址:

https://proceedings.mlr.press/v162/ahn22a/ahn22a.pdf

13. Minimum Cost Intervention Design for Causal Effect Identification

作者:Sina Akbari,Jalal Etesami, Negar Kiyavash

原文地址:

https://proceedings.mlr.press/v162/akbari22a/akbari22a.pdf

其他材料:

https://media.icml.cc/Conferences/ICML2022/supplementary/akbari22a-supp.zip

GitHub:

https://github.com/sinaakbarii/min_cost_intervention

14. How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models

作者:Ahmed Alaa,Boris Van Breugel, Evgeny S. Saveliev, Mihaela van der Schaar

原文地址:

https://proceedings.mlr.press/v162/alaa22a/alaa22a.pdf

GitHub:

https://github.com/vanderschaarlab/evaluating-generative-models

15. A Natural Actor-Critic Framework for Zero-Sum Markov Games

作者:Ahmet Alacaoglu,Luca Viano, Niao He, Volkan Cevher

原文地址:

https://proceedings.mlr.press/v162/alacaoglu22a/alacaoglu22a.pdf

16. Deploying Convolutional Networks on Untrusted Platforms Using 2D Holographic Reduced Representations

作者:Mohammad Mahmudul Alam,Edward Raff, Tim Oates, James Holt

原文地址:

https://proceedings.mlr.press/v162/alam22a/alam22a.pdf

GitHub:

https://github.com/neuromorphiccomputationresearchprogram/connectionist-symbolic-pseudo-secrets

17. Optimistic Linear Support and Successor Features as a Basis for Optimal Policy Transfer

作者:Lucas Nunes Alegre,Ana Bazzan, Bruno C. Da Silva

原文地址:

https://proceedings.mlr.press/v162/alegre22a/alegre22a.pdf

GitHub:

https://github.com/lucasalegre/sfols

18. Structured Stochastic Gradient MCMC

作者:Antonios Alexos,Alex J Boyd, Stephan Mandt

原文地址:

https://proceedings.mlr.press/v162/alexos22a/alexos22a.pdf

github:

https://github.com/ajboyd2/pytorch_lvi

19. XAI for Transformers: Better Explanations through Conservative Propagation

作者:Ameen Ali,Thomas Schnake, Oliver Eberle, Grégoire Montavon, Klaus-Robert Müller, Lior Wolf

原文地址:

https://proceedings.mlr.press/v162/ali22a/ali22a.pdf

其他材料:

https://media.icml.cc/Conferences/ICML2022/supplementary/ali22a-supp.zip

Github:

https://github.com/ameenali/xai_transformers

20. RUMs from Head-to-Head Contests

作者:Matteo Almanza,Flavio Chierichetti, Ravi Kumar, Alessandro Panconesi, Andrew Tomkins

原文地址:

https://proceedings.mlr.press/v162/almanza22a/almanza22a.pdf

其他材料:

https://media.icml.cc/Conferences/ICML2022/supplementary/almanza22a-supp.zip

21. Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval

作者:Uri Alon,Frank Xu, Junxian He, Sudipta Sengupta, Dan Roth, Graham Neubig

原文地址:

https://proceedings.mlr.press/v162/alon22a/alon22a.pdf

GitHub:

https://github.com/neulab/retomaton

22. Minimax Classification under Concept Drift with Multidimensional Adaptation and Performance Guarantees

作者:Verónica Álvarez,Santiago Mazuelas, Jose A Lozano

原文地址:

https://proceedings.mlr.press/v162/alvarez22a/alvarez22a.pdf

其他材料:

https://media.icml.cc/Conferences/ICML2022/supplementary/alvarez22a-supp.zip

GitHub:

https://github.com/machinelearningbcam/amrc-for-concept-drift-icml-2022

23. Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation

作者:Sebastian E Ament,Carla P Gomes

原文地址:

https://proceedings.mlr.press/v162/ament22a/ament22a.pdf

GitHub:

https://github.com/sebastianament/covariancefunctions.jl

24. Public Data-Assisted Mirror Descent for Private Model Training

作者:Ehsan Amid,Arun Ganesh, Rajiv Mathews, Swaroop Ramaswamy, Shuang Song, Thomas Steinke, Thomas Steinke, Vinith M Suriyakumar, Om Thakkar, Abhradeep Thakurta

原文地址:

https://proceedings.mlr.press/v162/amid22a/amid22a.pdf

25. On Last-Iterate Convergence Beyond Zero-Sum Games

作者:Ioannis Anagnostides,Ioannis Panageas, Gabriele Farina, Tuomas Sandholm

原文地址:

https://proceedings.mlr.press/v162/anagnostides22a/anagnostides22a.pdf

26. Online Algorithms with Multiple Predictions

作者:Keerti Anand,Rong Ge, Amit Kumar, Debmalya Panigrahi

原文地址:

https://proceedings.mlr.press/v162/anand22a/anand22a.pdf

27. Learning to Hash Robustly, Guaranteed

作者:Alexandr Andoni,Daniel Beaglehole

原文地址:

https://proceedings.mlr.press/v162/andoni22a/andoni22a.pdf

28. Set Based Stochastic Subsampling

作者:Bruno Andreis,Seanie Lee, A. Tuan Nguyen, Juho Lee, Eunho Yang, Sung Ju Hwang

原文地址:

https://proceedings.mlr.press/v162/andreis22a/andreis22a.pdf

29. Towards Understanding Sharpness-Aware Minimization

作者:Maksym Andriushchenko,Nicolas Flammarion

原文地址:

https://proceedings.mlr.press/v162/andriushchenko22a/andriushchenko22a.pdf

Github:

https://github.com/tml-epfl/understanding-sam

30. Fair and Fast k-Center Clustering for Data Summarization

作者:Haris Angelidakis,Adam Kurpisz, Leon Sering, Rico Zenklusen

原文地址:

https://proceedings.mlr.press/v162/angelidakis22a/angelidakis22a.pdf

其他材料:

https://media.icml.cc/Conferences/ICML2022/supplementary/angelidakis22a-supp.zip

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-08-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 一点人工一点智能 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
腾讯云 TI 平台
腾讯云 TI 平台(TencentCloud TI Platform)是基于腾讯先进 AI 能力和多年技术经验,面向开发者、政企提供的全栈式人工智能开发服务平台,致力于打通包含从数据获取、数据处理、算法构建、模型训练、模型评估、模型部署、到 AI 应用开发的产业 + AI 落地全流程链路,帮助用户快速创建和部署 AI 应用,管理全周期 AI 解决方案,从而助力政企单位加速数字化转型并促进 AI 行业生态共建。腾讯云 TI 平台系列产品支持公有云访问、私有化部署以及专属云部署。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档