前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >ICLR 2022最佳论文解读

ICLR 2022最佳论文解读

作者头像
圆圆的算法笔记
发布2022-12-19 20:42:13
4770
发布2022-12-19 20:42:13
举报
文章被收录于专栏:圆圆的算法笔记

点关注,不迷路,定期更新干货算法笔记~

今天给大家介绍ICLR 2022最佳论文PICO: CONTRASTIVE LABEL DISAMBIGUATION FOR PARTIAL LABEL LEARNING,这篇文章解决的是Partial Label Learning(PLL)问题,即训练数据中一个图像不是一个确定的label,而是一组可能的label集合,需要预测出每个样本的真实label。

下载地址:https://openreview.net/pdf?id=EhYjZy6e1gJ

1

什么是Partial Label Learning(PLL)

有监督学习是最常见的一种机器学习问题,给定一个输入样本,预测该样本的label是什么。Partial Label Learning(PLL)问题也是预测一个样本对应的label,但是和有监督学习问题的差异是,PLL问题的训练数据中,一个输入样本对应多个候选label,真正的label是候选label中的一个

为什么会有PLL这样的问题呢?因为在现实问题中,label来自于人工标注,而有的样本人工标注比较困难,只标注一个label会造成噪声较大的问题。例如下面的例子中,比较难区分这张狗对应的类别是哈士奇、雪橇犬还是萨摩耶,强行让人工标注成一个确定的label容易在数据中引入噪声。PLL放宽了这种限制,在标注的label中可以引入一些不确定性,给一个样本赋予多个候选label,模型学习从这些label中预测ground-truth对应的那个label。

2

PLL问题的难点

PLL的效果目前和有监督学习还有一定差距。PLL问题的难点在于标签消歧,也就是从候选label集合中预测出样本的真实label。业内一般的解法是学习样本高质量的表示,然后根据在特征空间中距离近的样本更可能属于同一类别这个假设,实现标签消歧。

然而,这种方法的问题在于,当label是一个不确定的集合而不是一个确定值时,这种不确定性也会对表示学习的过程造成负面影响。表示学习效果不好,又会对标签消歧的效果造成负面影响。

为了解决这个问题,ICLR 2022的最佳论文提出了基于对比学习的PLL问题求解方法。利用对比学习提升表示学习的效果,再利用良好的表示对label进行消歧,消歧后的label又有助于进一步生成良好的样本表征,形成良性循环,提升整体效果。

这篇文章提出的Partial label learning with COntrastive label disambiguation (PiCO) framework主要包括利用对比学习提升表示生成质量,以及基于聚类的label消歧两个核心模块。下面,我们走进这篇最佳论文,理解其背后的思想。

3

PiCO核心点1—对比学习引入PLL

第一个核心点是为了提升PLL中的表示生成效果,作者将对比学习的方法引入到PLL问题中。对比学习在有监督问题上已经取得广泛的应用,但是在PLL问题上目前还没有相关研究。将对比学习应用到PLL的一个最主要的问题是正样本对如何构造。在有监督学习中,每个样本都有其对应的确定性label,天然可以构造出正样本。而PLL问题中,每个样本的label是不确定的,无法直接获取正样本对

为了解决上述问题,本文提出利用分类器对样本的预测结果作为样本真实label(也就是伪标签persudo label),根据这个label构造正样本对。在得到正样本对后,利用MoCo对比学习框架进行表示学习,将样本的两种view分别输入两个参数共享的Encoder,其中key侧的Encoder使用动量更新的方式减小计算开销。对比学习loss作为一个辅助任务和主任务联合学习。对MoCo等对比学习框架不了解的同学,可以参考我之前的文章:对比学习中的4种经典训练模式。利用对比学习,可以让样本在特征空间形成类簇,这也为后续的标签消歧奠定了基础。

4

PiCO核心点2—标签消歧

本文采用了一种类似EM算法的思路实现标签消歧。首先,对于每个类别维护一个embedding向量u,它可以视为类的类簇中心。对于每个样本的label,在PLL中也用一个N维向量表示s,N代表类别数量,表示了该样本属于每个类别的概率。接下来为了实现标签消歧,在训练过程中不断更新s,更新方法是看样本表示和哪个类别向量最近,就用滑动平均的方式对s的那一维进行更新,公式可以表示为:

相应的,类别向量u也利用滑动平均的方式进行更新,公式如下:

通过这两个步骤的迭代进行,逐步实验标签消歧。这其实和Kmean以及Kmeans++这种方法类似,本质上就是一个聚类过程。从PiCO框架整体来看,对比学习提升表示学习效果,表示质量的提升又促进了下游基于聚类的标签消歧效果,标签的确定性增加又进一步提升了表示生成的质量,形成了良性循环。

5

实验结果

本文进行了大量实验从多个角度验证了PiCO解决PLL问题的效果。在样本表示的学习上,从下面的t-SNE向量可视化分析图可以看出,PiCO生成不用类别的向量表示非常清晰,类内的内聚性和类间的差异性相比其他方法都是更好的。

下面的实验结果对比了PiCO和和其他方法在PLL问题上的效果,可以看出PiCO要比其他方法效果有非常显著的提升。

6

总结

本文介绍了ICLR 2022的最佳论文,在Partial Label Learning问题上的解决方法。通过这篇文章,核心是理解顶会最佳论文的设计思路,本文用的求解方法比较优雅,背后的设计思路也非常清晰,背后的思考非常值得学习。

END

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-08-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 圆圆的算法笔记 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档