转载请以链接形式标明出处: 本文出自:103style的博客
Base on RxJava 2.X
RxJava 的 Schedulers 提供了以下五种 Scheduler(调度器):
static {
SINGLE = RxJavaPlugins.initSingleScheduler(new SingleTask());
COMPUTATION = RxJavaPlugins.initComputationScheduler(new ComputationTask());
IO = RxJavaPlugins.initIoScheduler(new IOTask());
NEW_THREAD = RxJavaPlugins.initNewThreadScheduler(new NewThreadTask());
TRAMPOLINE = TrampolineScheduler.instance();
}Schedulers.single() 为例介绍如果我们没有调用 setInitXXSchedulerHandler 或者 setXXSchedulerHandler 自己实现调度器的话(XX 代表上面除了 TRAMPOLINE 的四种调度器的名字),我们开发中用到的 Schedulers.io(); Schedulers.computation(); Schedulers.newThread(); Schedulers.single(); 实际上就是对应的 XXTask 的 call()方法返回的 Scheduler 对象,即对应的 XXScheduler 对象。
public static void setInitSingleSchedulerHandler(@Nullable Function<? super Callable<Scheduler>, ? extends Scheduler> handler) {
if (lockdown) {
throw new IllegalStateException("Plugins can't be changed anymore");
}
onInitSingleHandler = handler;
}
public static void setSingleSchedulerHandler(@Nullable Function<? super Scheduler, ? extends Scheduler> handler) {
if (lockdown) {
throw new IllegalStateException("Plugins can't be changed anymore");
}
onSingleHandler = handler;
}以下是 Schedulers.single() 的源码介绍:
onSingleScheduler() 中的 onSingleHandler 是通过 setSingleSchedulerHandler() 设置的,默认为 Null ,所以即返回 SINGLE。
public static Scheduler single() {
return RxJavaPlugins.onSingleScheduler(SINGLE);
}
public static Scheduler onSingleScheduler(@NonNull Scheduler defaultScheduler) {
Function<? super Scheduler, ? extends Scheduler> f = onSingleHandler;
if (f == null) {
return defaultScheduler;
}
return apply(f, defaultScheduler);
}SINGLE 是静态常量,通过 RxJavaPlugins.initSingleScheduler(new SingleTask()); 初始化。
static final Scheduler SINGLE;
static {
SINGLE = RxJavaPlugins.initSingleScheduler(new SingleTask());
...
}initSingleScheduler() 中的 onInitSingleHandler 是通过 setInitSingleSchedulerHandler() 设置的,默认为 Null ,所以即调用 callRequireNonNull(new SingleTask())。
public static Scheduler initSingleScheduler(@NonNull Callable<Scheduler> defaultScheduler) {
ObjectHelper.requireNonNull(defaultScheduler, "Scheduler Callable can't be null");
Function<? super Callable<Scheduler>, ? extends Scheduler> f = onInitSingleHandler;
if (f == null) {
return callRequireNonNull(defaultScheduler);
}
return applyRequireNonNull(f, defaultScheduler);
}callRequireNonNull(new SingleTask()) 即返回 SingleTask对象的 call 方法。
static Scheduler callRequireNonNull(@NonNull Callable<Scheduler> s) {
try {
return ObjectHelper.requireNonNull(s.call(), "Scheduler Callable result can't be null");
} catch (Throwable ex) {
throw ExceptionHelper.wrapOrThrow(ex);
}
}
static final class SingleTask implements Callable<Scheduler> {
@Override
public Scheduler call() throws Exception {
return SingleHolder.DEFAULT;
}
}即创建了一个 SingleScheduler 对象。
static final class SingleHolder {
static final Scheduler DEFAULT = new SingleScheduler();
}所以 Schedulers.single() 实际返回的是 SingleScheduler 对象.
同样的:
Schedulers.io(); 实际返回的是 IoScheduler 对象
Schedulers.computation(); 实际返回的是 ComputationScheduler 对象
Schedulers.newThread(); 实际返回的是 NewThreadScheduler 对象
SingleScheduler 源码介绍public final class SingleScheduler extends Scheduler {
final ThreadFactory threadFactory;
final AtomicReference<ScheduledExecutorService> executor = new AtomicReference<ScheduledExecutorService>();
private static final String KEY_SINGLE_PRIORITY = "rx2.single-priority";
private static final String THREAD_NAME_PREFIX = "RxSingleScheduler";
static final RxThreadFactory SINGLE_THREAD_FACTORY;
static final ScheduledExecutorService SHUTDOWN;
static {
SHUTDOWN = Executors.newScheduledThreadPool(0);
SHUTDOWN.shutdown();
int priority = Math.max(Thread.MIN_PRIORITY, Math.min(Thread.MAX_PRIORITY,
Integer.getInteger(KEY_SINGLE_PRIORITY, Thread.NORM_PRIORITY)));
SINGLE_THREAD_FACTORY = new RxThreadFactory(THREAD_NAME_PREFIX, priority, true);//1.1
}
public SingleScheduler() { //1.0
this(SINGLE_THREAD_FACTORY);
}
public SingleScheduler(ThreadFactory threadFactory) {//2.0
this.threadFactory = threadFactory;
executor.lazySet(createExecutor(threadFactory));//4.0
}
static ScheduledExecutorService createExecutor(ThreadFactory threadFactory) {//3.0
return SchedulerPoolFactory.create(threadFactory);
}
...
}(1.0)默认的构造方法,传入了一个 SINGLE_THREAD_FACTORY的静态常量。(1.1)我们可以看到它是在初始化为 new RxThreadFactory("RxSingleScheduler", 5 , true); 即为 线程名称前缀 为 RxSingleScheduler,优先级为5 不阻塞 的 RxThreadFactory 对象。
(2.0)然后设置当前的 threadFactory 为此 RxThreadFactory 对象。
(3.0)然后通过SchedulerPoolFactory.create(threadFactory)创建了一个执行者。
(3.1)即通过 Executors.newScheduledThreadPool(1, factory)创建了一个核心线程数为 1 的 ScheduledExecutorService(调度线程池)。
(3.2)并将ScheduledExecutorService 放进 SchedulerPoolFactory的 key 为 ScheduledThreadPoolExecutor的 Map 集合 POOLS中。
// Upcast to the Map interface here to avoid 8.x compatibility issues.
// See http://stackoverflow.com/a/32955708/61158
//这个用map接口是为了解决java8的一个bug,具体可以点击上面的链接查看
static final Map<ScheduledThreadPoolExecutor, Object> POOLS =
new ConcurrentHashMap<ScheduledThreadPoolExecutor, Object>();
public static ScheduledExecutorService create(ThreadFactory factory) {
final ScheduledExecutorService exec = Executors.newScheduledThreadPool(1, factory);//3.1
tryPutIntoPool(PURGE_ENABLED, exec);
return exec;
}
static void tryPutIntoPool(boolean purgeEnabled, ScheduledExecutorService exec) {
if (purgeEnabled && exec instanceof ScheduledThreadPoolExecutor) {
ScheduledThreadPoolExecutor e = (ScheduledThreadPoolExecutor) exec;
POOLS.put(e, exec);//3.2
}
}(4.0)然后 将 AtomicReference<ScheduledExecutorService> 对象 executor 的 value 设置为上面创建的 ScheduledExecutorService。
我们之前在 Rxjava之timer和interval操作符源码解析 介绍过 timer操作符在订阅的时候会执行ObservableTimer的 subscribeActual 方法,
public void subscribeActual(Observer<? super Long> observer) {
TimerObserver ios = new TimerObserver(observer);
observer.onSubscribe(ios);
Disposable d = scheduler.scheduleDirect(ios, delay, unit);
ios.setResource(d);
}其中的 scheduler.scheduleDirect(ios, delay, unit)中 会通过createWorker()创建一个 Worker。
public Disposable scheduleDirect(@NonNull Runnable run, long delay, @NonNull TimeUnit unit) {
final Worker w = createWorker(); //
final Runnable decoratedRun = RxJavaPlugins.onSchedule(run);
DisposeTask task = new DisposeTask(decoratedRun, w);
w.schedule(task, delay, unit);
return task;
}我们来看看 SingleScheduler的 createWorker():
public Worker createWorker() {
return new ScheduledWorker(executor.get());
}
static final class ScheduledWorker extends Scheduler.Worker {
final ScheduledExecutorService executor;
final CompositeDisposable tasks;
ScheduledWorker(ScheduledExecutorService executor) {
this.executor = executor;
this.tasks = new CompositeDisposable();
}
...
}executor.get()获取 AtomicReference 的value值,通过上面的SingleScheduler 源码(4.0)的介绍,即获取到的是核心线程数为1的 ScheduledExecutorService。ScheduledWorker的 executor。然后我们看看w.schedule(task, delay, unit):
public Disposable schedule(@NonNull Runnable run, long delay, @NonNull TimeUnit unit) {
if (disposed) {
return EmptyDisposable.INSTANCE;
}
Runnable decoratedRun = RxJavaPlugins.onSchedule(run);
ScheduledRunnable sr = new ScheduledRunnable(decoratedRun, tasks);
tasks.add(sr);
try {
Future<?> f;
if (delay <= 0L) {
f = executor.submit((Callable<Object>)sr);
} else {
f = executor.schedule((Callable<Object>)sr, delay, unit);
}
sr.setFuture(f);
} catch (RejectedExecutionException ex) {
dispose();
RxJavaPlugins.onError(ex);
return EmptyDisposable.INSTANCE;
}
return sr;
}首先校验 disposed 的状态,true就直接返回EmptyDisposable.INSTANCE。Rxjava之timer和interval操作符源码解析 中介绍的interval操作符里schedulePeriodicallyDirect中会校验这个返回值。
然后构建了也给ScheduledRunnable对象(继承自AtomicReferenceArray)。
将传递进来的Runnable对象赋值给actual。
将 tasks赋值给AtomicReferenceArray的长度为3的array的第一个索引位置。
public ScheduledRunnable(Runnable actual, DisposableContainer parent) {
super(3);
this.actual = actual;
this.lazySet(0, parent);
}tasks.add(sr)即把ScheduledRunnable添加到OpenHashSet<Disposable>的resources集合中,在调用dispose()的时候去清空这个集合。
public void dispose() {
if (!disposed) {
disposed = true;
tasks.dispose();
}
}然后把这个任务丢给线程池去执行:以timer操作符为例,线程池执行任务即为执行 ObservableTimer中TimerObserver 的 run 方法。
//ObservableTimer
public void subscribeActual(Observer<? super Long> observer) {
TimerObserver ios = new TimerObserver(observer);
observer.onSubscribe(ios);
Disposable d = scheduler.scheduleDirect(ios, delay, unit);
ios.setResource(d);
}
//ScheduledRunnable
public void run() {
lazySet(THREAD_INDEX, Thread.currentThread());//1.0
try {
try {
actual.run();
} catch (Throwable e) {
// Exceptions.throwIfFatal(e); nowhere to go
RxJavaPlugins.onError(e);
}
} finally {
lazySet(THREAD_INDEX, null);//1.1
Object o = get(PARENT_INDEX);//2.0
if (o != PARENT_DISPOSED && compareAndSet(PARENT_INDEX, o, DONE) && o != null) {
((DisposableContainer)o).delete(this);//2.1
}
for (;;) {
o = get(FUTURE_INDEX);//3.0
if (o == SYNC_DISPOSED || o == ASYNC_DISPOSED || compareAndSet(FUTURE_INDEX, o, DONE)) {
break;
}
}
}
}(1.0)保存当前执行任务的线程,(1.1)置空当前执行任务的线程。(2.0) 获取上面设置的CompositeDisposable对象。(2.2) 去删除OpenHashSet<Disposable> resources中执行完成的任务。(3.0)直到任务执行完成或者被取消才结束。返回的 Future对象,被赋值给 ScheduledRunnable中 array的第二个位置。
static final int PARENT_INDEX = 0;
static final int FUTURE_INDEX = 1;
static final int THREAD_INDEX = 2;
public void setFuture(Future<?> f) {
for (;;) {
Object o = get(FUTURE_INDEX);
if (o == DONE) {
return;
}
if (o == SYNC_DISPOSED) {
f.cancel(false);
return;
}
if (o == ASYNC_DISPOSED) {
f.cancel(true);
return;
}
if (compareAndSet(FUTURE_INDEX, o, f)) {
return;
}
}
}和SingleScheduler类似NewThreadScheduler也是构建了一个核心线程数为1的ScheduledExecutorService。
区别就是 NewThreadScheduler 每次调用 Schedulers.newThread() 都是重新创建了一个新的线程池, 不需要去记录之前运行的任务,每个任务之前不会有什么关联,所以使用得时候要注意。
以下代码是 NewThreadWorker的 scheduleDirect方法:
public Disposable scheduleDirect(final Runnable run, long delayTime, TimeUnit unit) {
ScheduledDirectTask task = new ScheduledDirectTask(RxJavaPlugins.onSchedule(run));
try {
Future<?> f;
if (delayTime <= 0L) {
f = executor.submit(task);
} else {
f = executor.schedule(task, delayTime, unit);
}
task.setFuture(f);
return task;
} catch (RejectedExecutionException ex) {
RxJavaPlugins.onError(ex);
return EmptyDisposable.INSTANCE;
}
}ScheduledDirectTask:执行任务的返回值为 null。
public final class ScheduledDirectTask extends AbstractDirectTask implements Callable<Void> {
private static final long serialVersionUID = 1811839108042568751L;
public ScheduledDirectTask(Runnable runnable) {
super(runnable);
}
@Override
public Void call() throws Exception {
runner = Thread.currentThread();
try {
runnable.run();
} finally {
lazySet(FINISHED);
runner = null;
}
return null;
}
}ComputationScheduler 在Rxjava之timer和interval操作符源码解析 中已经介绍过,就不再赘述了。
首先我们看看构造函数做了些什么:
private static final TimeUnit KEEP_ALIVE_UNIT = TimeUnit.SECONDS;
static {
KEEP_ALIVE_TIME = Long.getLong(KEY_KEEP_ALIVE_TIME, KEEP_ALIVE_TIME_DEFAULT);
SHUTDOWN_THREAD_WORKER = new ThreadWorker(new RxThreadFactory("RxCachedThreadSchedulerShutdown"));
SHUTDOWN_THREAD_WORKER.dispose();
int priority = Math.max(Thread.MIN_PRIORITY, Math.min(Thread.MAX_PRIORITY,
Integer.getInteger(KEY_IO_PRIORITY, Thread.NORM_PRIORITY)));
WORKER_THREAD_FACTORY = new RxThreadFactory(WORKER_THREAD_NAME_PREFIX, priority);
EVICTOR_THREAD_FACTORY = new RxThreadFactory(EVICTOR_THREAD_NAME_PREFIX, priority);
NONE = new CachedWorkerPool(0, null, WORKER_THREAD_FACTORY);//1.0
NONE.shutdown();
}
static final class CachedWorkerPool implements Runnable {
private final long keepAliveTime;
private final ConcurrentLinkedQueue<ThreadWorker> expiringWorkerQueue;
final CompositeDisposable allWorkers;
private final ScheduledExecutorService evictorService;
private final Future<?> evictorTask;
private final ThreadFactory threadFactory;
CachedWorkerPool(long keepAliveTime, TimeUnit unit, ThreadFactory threadFactory) {
this.keepAliveTime = unit != null ? unit.toNanos(keepAliveTime) : 0L;
this.expiringWorkerQueue = new ConcurrentLinkedQueue<ThreadWorker>();
this.allWorkers = new CompositeDisposable();
this.threadFactory = threadFactory;
ScheduledExecutorService evictor = null;
Future<?> task = null;
if (unit != null) {
evictor = Executors.newScheduledThreadPool(1, EVICTOR_THREAD_FACTORY);
task = evictor.scheduleWithFixedDelay(this, this.keepAliveTime, this.keepAliveTime, TimeUnit.NANOSECONDS);
}
evictorService = evictor;
evictorTask = task;
}
...
void shutdown() {
allWorkers.dispose();
if (evictorTask != null) {
evictorTask.cancel(true);
}
if (evictorService != null) {
evictorService.shutdownNow();
}
}
}
public IoScheduler() {
this(WORKER_THREAD_FACTORY);
}
public IoScheduler(ThreadFactory threadFactory) {
this.threadFactory = threadFactory;
this.pool = new AtomicReference<CachedWorkerPool>(NONE);
start();
}
@Override
public void start() {
CachedWorkerPool update = new CachedWorkerPool(KEEP_ALIVE_TIME, KEEP_ALIVE_UNIT, threadFactory);
if (!pool.compareAndSet(NONE, update)) {
update.shutdown();
}
}(1.0)首先构造了一个CachedWorkerPool。(2.0)将构造的CachedWorkerPool设置为AtomicReference的value的值。(3.0)构造了一个CachedWorkerPool(60, TimeUnit.SECONDS, new RxThreadFactory(WORKER_THREAD_NAME_PREFIX, priority)),(3.1)即创建了evictorService为核心线程数为1的ScheduledExecutorService的CachedWorkerPool对象。(4.0)更新AtomicReference的value的值为(3.0)构造的CachedWorkerPool,!pool.compareAndSet(NONE, update)不成立。接下来我们看看createWorker():
public Worker createWorker() {
return new EventLoopWorker(pool.get());//1.0
}
static final class EventLoopWorker extends Scheduler.Worker {
private final CompositeDisposable tasks;
private final CachedWorkerPool pool;
private final ThreadWorker threadWorker;
final AtomicBoolean once = new AtomicBoolean();
EventLoopWorker(CachedWorkerPool pool) {
this.pool = pool;
this.tasks = new CompositeDisposable();
this.threadWorker = pool.get();//2.0
}
....
}(1.0) pool.get()返回的即是 evictorService为核心线程数为1的ScheduledExecutorService的CachedWorkerPool对象。
(2.0) 调用CachedWorkerPool对象的get()获取ThreadWorker。
(2.1) expiringWorkerQueue初始化为空,所以不成立。
(2.2) 所以get()返回的是一个new ThreadWorker(new RxThreadFactory("RxCachedThreadScheduler", 5))。
ThreadWorker get() {
if (allWorkers.isDisposed()) {
return SHUTDOWN_THREAD_WORKER;
}
while (!expiringWorkerQueue.isEmpty()) { //2.1
ThreadWorker threadWorker = expiringWorkerQueue.poll();
if (threadWorker != null) {
return threadWorker;
}
}
// No cached worker found, so create a new one.
ThreadWorker w = new ThreadWorker(threadFactory);//2.2
allWorkers.add(w);
return w;
}接下来我们看看EventLoopWorker的schedule():
public Disposable schedule(@NonNull Runnable action, long delayTime, @NonNull TimeUnit unit) {
if (tasks.isDisposed()) {
// don't schedule, we are unsubscribed
return EmptyDisposable.INSTANCE;
}
return threadWorker.scheduleActual(action, delayTime, unit, tasks);
}createWorker()中我们知到threadWorker即为 new ThreadWorker(new RxThreadFactory("RxCachedThreadScheduler", 5))。接下来我们看看ThreadWorker继承自NewThreadWorker的scheduleActual(...):
public ScheduledRunnable scheduleActual(final Runnable run, long delayTime, @NonNull TimeUnit unit, @Nullable DisposableContainer parent) {
Runnable decoratedRun = RxJavaPlugins.onSchedule(run);
ScheduledRunnable sr = new ScheduledRunnable(decoratedRun, parent);
if (parent != null) {
if (!parent.add(sr)) {
return sr;
}
}
Future<?> f;
try {
if (delayTime <= 0) {
f = executor.submit((Callable<Object>)sr);
} else {
f = executor.schedule((Callable<Object>)sr, delayTime, unit);
}
sr.setFuture(f);
} catch (RejectedExecutionException ex) {
if (parent != null) {
parent.remove(sr);
}
RxJavaPlugins.onError(ex);
}
return sr;
}SingleScheduler类似,就不再赘述了。Schedulers.single() 实际返回的是 SingleScheduler。
Schedulers.io() 实际返回的是 IoScheduler。
Schedulers.computation() 实际返回的是 ComputationScheduler。
Schedulers.newThread() 实际返回的是 NewThreadScheduler。
createWorker() 返回的值分别为:
Schedulers.single() : ScheduledWorker。
Schedulers.io() :ThreadWorker。
Schedulers.computation() :PoolWorker。
Schedulers.newThread() :NewThreadWorker。
SingleScheduler、Schedulers.io()、NewThreadScheduler 、Schedulers.computation() 最终都是通过 Executors.newScheduledThreadPool(1, factory);构建的核心线程数为1的线程池。
区别就是 Schedulers.newThread() 每次都是创建新的线程池, 而其他的都是服用之前已经创建得线程池!!! 所以要慎重选择。
以上