上一小节中,我们介绍了ggpattern并鉴赏了ggpattern中两大pattern之一的array_based_pattern。详见:R-ggpattern(绘图花式大赏-1)
接下来,我们继续介绍一下另一大pattern-geometry_based pattern,鉴赏一下geometry_based pattern绘制的图。
geometry-based pattern的特点就是比较的丑,不能加这么多特别的图片啥的。
geometry-based pattern 有三个重要的参数:
image.png
image.png
image.png
df <- data.frame(level = c("a", "b", "c", 'd'), outcome = c(2.3, 1.9, 3.2, 1))
p <- ggplot(df, aes(level, outcome)) +#设置x轴y轴
geom_col_pattern(
aes(pattern = level, pattern_angle = level, pattern_spacing = level), #控制的三个参数
fill = 'white',# 柱子内里是白色
colour = 'black', #柱子轮廓是黑色
pattern_density = 0.35, #设置密度
pattern_fill = 'black',#图形颜色
pattern_colour = 'black'#图形的轮廓
) +
theme_bw() +
labs(
title = "ggpattern::geom_col_pattern()",
subtitle = 'geometry-based patterns'
) +
scale_pattern_spacing_discrete(range = c(0.01, 0.05)) + #这个设定了两个图形之间的间隔
theme(legend.position = 'none ') +
coord_fixed(ratio = 1)#横纵轴比
p
image.png
p <- ggplot(df, aes(level, outcome)) +
geom_col_pattern(
aes(pattern = level, fill = level, pattern_fill = level),
colour = 'black', #柱子的轮廓是黑色
pattern_density = 0.35,
pattern_key_scale_factor = 1.3) +#这个是控制图例中图案大小的,这里没有设置就没用
#一般来说这个值设置为1是比较合适的
theme_bw() +
labs(
title = "ggpattern::geom_col_pattern()",
subtitle = 'geometry-based patterns'
) +
scale_pattern_fill_manual(values = c(a='blue', b='red', c='yellow', d='darkgreen')) +#设置图形的颜色
theme(legend.position = 'none') +
coord_fixed(ratio = 1)
p
image.png
接下来的操作就和array-based pattern的套路一样了,会教学你不同的图的画法。这里把代码抄写并且注释一下,尤其是比较新的操作:
##geom_bar_pattern()柱状图
p <- ggplot(mpg, aes(class)) +
geom_bar_pattern(
aes(
pattern = class,
pattern_angle = class#这两个参数使得不同的class之间有不同的角度和形状
),
fill = 'white',
colour = 'black',#决定了主体是黑白色
pattern_spacing = 0.025
) +
theme_bw(18) +
labs(title = "ggpattern::geom_bar_pattern()") +
theme(legend.position = 'none') +
coord_fixed(ratio = 1/15) +
scale_pattern_discrete(guide = guide_legend(nrow = 1))#熟悉的操作,让所有的图例变成一行
p
##使用geom_bar_pattern绘制饼图
df <- data.frame(
group = factor(c("Cool", "But", "Use", "Less"), levels = c("Cool", "But", "Use", "Less")),
value = c(10, 20, 30, 40)#这里要设置factor
)
p <- ggplot(df, aes(x="", y = value, pattern = group, pattern_angle = group))+#这里x为空的
geom_bar_pattern(
width = 1,#这里设置的是柱体的宽度
stat = "identity", #这样设置的柱状图就是叠叠乐,stat表示一种统计方式
#https://www.cnblogs.com/muchen/p/5279727.html
fill = 'white',
colour = 'black',#黑白色
pattern_aspect_ratio = 1,
pattern_density = 0.3
) +
coord_polar("y", start=0) + #设置极坐标是重点
theme_void(20) + #空白的背景
theme(
legend.key.size = unit(2, 'cm')#设置图例的大小
) +
labs(title = "ggpattern::geom_bar_pattern() + coord_polar()")
p
##geom_bin2d_pattern
p <- ggplot(diamonds, aes(x, y)) +
xlim(4, 10) + ylim(4, 10) +#设置坐标轴范围
geom_bin2d_pattern(aes(pattern_spacing = ..density..), fill = 'white', bins = 6, colour = 'black', size = 1) +
theme_bw(18) +
theme(legend.position = 'none') +
labs(title = "ggpattern::geom_bin2d_pattern()")
p
#这个过程真的比array简单很多可见默认就是geom-based的形式
## geom_boxplot_pattern
p <- ggplot(mpg, aes(class, hwy)) +
geom_boxplot_pattern(
aes(
pattern = class,#不一样的pattern不一样的颜色
pattern_fill = class
),
pattern_spacing = 0.03#图形间距
) +
theme_bw(18) +
labs(title = "ggpattern::geom_boxplot_pattern()") +
theme(legend.position = 'none') +
coord_fixed(1/8)
p
## geom_col_pattern
df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2))
p <- ggplot(df, aes(trt, outcome)) +
geom_col_pattern(
aes(
pattern = trt,
fill = trt
),
colour = 'black',
pattern_density = 0.5,
pattern_key_scale_factor = 1.11
) +
theme_bw(18) +
labs(title = "ggpattern::geom_col_pattern()") +
theme(legend.position = 'none') +
coord_fixed(ratio = 1/2)
p
## geom_crossbar_pattern
df <- data.frame(
trt = factor(c(1, 1, 2, 2)),#处理未处理有两个
resp = c(1, 5, 3, 4),#因变量值
group = factor(c(1, 2, 1, 2)),#分组
upper = c(1.1, 5.3, 3.3, 4.2),#上限
lower = c(0.8, 4.6, 2.4, 3.6)#下限
)
p <- ggplot(df, aes(trt, resp, colour = group)) +
geom_crossbar_pattern(
aes(
ymin = lower,
ymax = upper,
pattern_angle = trt, #不同的角度
pattern = group#不同的图形
), width = 0.2,
pattern_spacing = 0.02
) +
theme_bw(18) +
labs(title = "ggpattern::geom_crossbar_pattern()") +
theme(legend.position = 'none') +
coord_fixed(ratio = 1/3)
p
## geom_density_pattern
p <- ggplot(mtcars) +
geom_density_pattern(
aes(
x = mpg,
pattern_fill = as.factor(cyl),
pattern = as.factor(cyl)
),
fill = 'white',
pattern_key_scale_factor = 1.2,
pattern_density = 0.4
) +
theme_bw(18) +
labs(title = "ggpattern::geom_density_pattern()") +
theme(legend.key.size = unit(2, 'cm')) +
coord_fixed(ratio = 100)
p
##geom_map_pattern
if (require(maps)) {
crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests)
states_map <- map_data("state")
p <- ggplot(crimes, aes(map_id = state)) +
geom_map_pattern(
aes(
# fill = Murder,
pattern_fill = Murder,
pattern_spacing = state,
pattern_density = state,
pattern_angle = state,#必须拥有的老三样
pattern = state
),
fill = 'white',
colour = 'black',
pattern_aspect_ratio = 1.8,
map = states_map
) +
expand_limits(x = states_map$long, y = states_map$lat) +
coord_map() +
theme_bw(18) +
labs(title = "ggpattern::geom_map_pattern()") +
scale_pattern_density_discrete(range = c(0.01, 0.3)) +
scale_pattern_spacing_discrete(range = c(0.01, 0.03)) +
theme(legend.position = 'none')
p
}
## geom_polygon_pattern
angle <- seq(0, 2*pi, length.out = 7) + pi/6
polygon_df <- data.frame(
angle = angle,
x = cos(angle),
y = sin(angle)
)
p <- ggplot(polygon_df) +
geom_polygon_pattern(
aes(x = x, y = y),
fill = 'white',
colour = 'black',
pattern_spacing = 0.15,
pattern_density = 0.4,
pattern_fill = 'lightblue',
pattern_colour = '#002366',
pattern_angle = 45
) +
labs(title = "ggpattern") +
coord_equal() +
theme_bw(25) +
theme(axis.title = element_blank())
p
## geom_rect_pattern
plot_df <- data.frame(
xmin = c(0, 10),
xmax = c(8, 18),
ymin = c(0, 10),
ymax = c(5, 19),
type = c('a', 'b'),
angle = c(45, 0),
pname = c('circle', 'circle'),#设置里面的形状,其他的形状键R-ggpattern(1)
pcolour = c('red', 'blue'),#设置颜色
pspace = c(0.03, 0.05),
size = c(0.5, 1),
stringsAsFactors = FALSE
)
p <- ggplot(plot_df) +
geom_rect_pattern(
aes(
xmin=xmin, ymin=ymin, xmax=xmax, ymax=ymax,
pattern_angle = I(angle),
pattern_colour = I(pcolour),
pattern_spacing = I(pspace),
pattern_size = I(size)
),
pattern = 'circle',
fill = 'white',
colour = 'black',
pattern_density = 0.3
) +
theme_bw(18) +
labs(title = "ggpattern::geom_rect_pattern()") +
theme(legend.key.size = unit(1.5, 'cm'))
p
## geom_violin_pattern
huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))
p <- ggplot(huron, aes(year)) +
geom_ribbon_pattern(
aes(
ymin = level - 1,
ymax = level + 1
),
fill = NA,
colour = 'black',
pattern = 'circle',
pattern_spacing = 0.03,
pattern_density = 0.5,
pattern_angle = 30,
outline.type = 'legacy'
) +
theme_bw(18) +
labs(title = "ggpattern::geom_ribbon_pattern()")
p
library(ggpattern)
if (require("gganimate")) {
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# 创建不同时间状态的数据框
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
df1 <- data.frame(time = 1, offset = 0 , trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2), stringsAsFactors = FALSE)
df2 <- data.frame(time = 2, offset = 0.045, trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2), stringsAsFactors = FALSE)
df <- rbind(df1, df2)
#offset代表左右移动
#所以上表代表左右不移动,上下移动
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#将不同的状态进行转换
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
p <- ggplot(df, aes(trt, outcome)) +
geom_col_pattern(
aes(
pattern_fill = trt,
pattern_xoffset = I(offset), #移动情况
pattern_yoffset = I(-offset)
),
colour = 'black',
fill = 'white',
pattern_density = 0.5,
pattern_angle = 45
) +
theme_bw() +
labs(title = "ggpattern + gganimate") +
theme(legend.position = 'none') +
coord_fixed(ratio = 1/2)
p <- p + transition_states(time, transition_length = 2,#转换的相对长度,和状态数量一致
state_length = 0, #暂停
wrap = FALSE)#是否需要重复播放(回到第一张图)
animate(p, nframes = 60, fps = 20)#nframe渲染帧数,fps动画的帧速率,单位为帧/秒(默认为10)
}
感兴趣的小伙伴可以来试试画各式各样的图额!