整理:AI算法与图像处理
CVPR2022论文和代码整理:https://github.com/DWCTOD/CVPR2022-Papers-with-Code-Demo
ECCV2022论文和代码整理:https://github.com/DWCTOD/ECCV2022-Papers-with-Code-Demo
标题:CLIFF: Carrying Location Information in Full Frames into Human Pose and Shape Estimation
代码:https://github.com/huawei-noah/noah-research/tree/master/CLIFF
论文:https://arxiv.org/abs/2208.00571
自顶向下的方法在3D人体姿势和形状估计领域占据主导地位,因为它们与人体检测分离,允许研究人员专注于核心问题。然而,裁剪是它们的第一步,从一开始就丢弃了位置信息,这使得它们无法在原始相机坐标系中准确预测全局旋转。为了解决这个问题,我们建议在这个任务中携带全帧位置信息(CLIFF)。具体来说,我们通过将裁剪的图像特征与其边界框信息连接起来,向CLIFF提供更全面的特征。我们在更宽的全帧视野下计算2D重投影损失,采用与在图像中投影的人相似的投影过程。CLIFF由全球位置感知信息提供并监督,它直接预测全球旋转以及更精确的关节姿势。此外,我们提出了一种基于CLIFF的伪地面真值注释器,它为野外二维数据集提供高质量的三维注释,并为基于回归的方法提供关键的全面监督。对流行基准测试的大量实验表明,CLIFF的表现明显优于现有技术,并在AGORA排行榜上排名第一(SMPL算法跟踪)。
ARAH: Animatable Volume Rendering of Articulated Human SDFs
Towards Efficient and Effective Self-Supervised Learning of Visual Representations
On-the-go Reflectance Transformation Imaging with Ordinary Smartphones
Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection
Scaling Adversarial Training to Large Perturbation Bounds
How Would The Viewer Feel? Estimating Wellbeing From Video Scenarios
Decoupling Features in Hierarchical Propagation for Video Object Segmentation
HUMANISE: Language-conditioned Human Motion Generation in 3D Scenes
Hierarchical Normalization for Robust Monocular Depth Estimation