In this study, we utilized scRNA-seq profiles of CD8+ T cells in melanoma to derive a cluster of tumor-reactive T cells, and further developed a tumor-reactive signature (TRS) to indicate the tumor reactivity of tumor samples. We validated the ability of distinguishing tumor-reactive cells or cell groups of the TRS in multiple cohorts. Furthermore, we demonstrated significant correlation of the TRS with clinical outcomes and response to immunotherapy of melanoma patients
we downloaded three Smart-seq2 datasets [GSE120575 (16), GSE72056 (6)and GSE115978 (15)] of single-cell RNA sequencing (scRNA-seq) in melanoma from GEO database. A total of 8262 CD8+ T cells from 80 samples
CCA 整合数据。
从各个黑色素瘤数据集整合的CD8+ T细胞如下:
image-20220715111440066
大部分主要是C0 和C1 细胞:
image-20220715111612682
也一定程度反应细胞的异质性。
image-20220715112446632
看G2M 期细胞的比例(分裂增殖期)
image-20220715134224791
image-20220715134622635
image-20220715133003480
Recent studies have shown that tumor-reactive T cells exhibit exhausted phenotype:
image-20220715134813196
针对这三个亚群。
看与T细胞活化相关基因表达:CD38 and HLA-DRA
image-20220715135259211
三个亚群显著表达升高。
以及肿瘤反应T细胞marker:
image-20220715135356233
而C3_effector 却不怎么表达,说明这些效应细胞可能是bystander。
另外设计了三个gene sig,we curated two tissue resident memory signatures (29942092_rm, 28930685_rm) and a T cell activation signature (31359002_act),三个cluster 依然上升:
image-20220715135834939
这些证据都表明这三个耗竭亚型都可能是肿瘤反应T细胞。
TCR 结果来自GSE120575。
Previous studies have proven that the majority of TCR clones with high clonal expansion have been shown to be associated with tumor reactivity in melanomas。高度克隆扩张的T 细胞与黑色素瘤肿瘤反应相关。
with 1381 cells harboring unique TCRs, 500 cells harboring repeated TCRs, and 1197 cells with clonally expand TCRs:
image-20220715142351252
C0_memory 和C1_exhausted 有较多的TCR 克隆:
image-20220715142421747
不同病人的克隆异质性也很强:
image-20220715142602988
克隆扩张情况较多的病人,C1 亚型也越多。
image-20220715142844497
而TCR 样本中T 细胞的数目、克隆的数目也和C1 比例存在一定的相关性:
image-20220715142926509
image-20220715143018167
而更多比例的C1 还表现出较低的克隆性。
C1 与克隆扩张事件相关。
综合与肿瘤反应相关基因、基因集,与细胞毒性相关的基因,考虑C1_exhuasted 亚型可以反应T细胞的肿瘤反应性。
image-20220715144551060
采用两步的策略:
d state from the others, resulting in 20 genes (Figure 3A). These genes were defined as the tumor reactive signature (TRS), including co-inhibitory receptors (CTLA4, PDCD1, TIGIT and HAVCR2), reactive markers (CD38 and ENTPD1), effector molecules (NKG7 and PRF1), tumor necrosis factor TNFRSF9 and critical exhaustion-related regulator TOX
image-20220715144756603
GO 富集显示The genes in TRS are widely involved in T cell activation,cellkilling,responsetotumorcell,chemokine production, cytokine secretion, and chronic inflammatory response,也与tumor reactive:
image-20220715144816378
下载其他癌症的单细胞数据:
we downloaded 4 scRNA-seq datasets of different cancer types (including hepatocellular carcinoma, non-small cell lung cancer, colorectal cancer and melanoma) from the GEO database under accession numbers GSE98638, GSE99254, GSE108989 and GSE123139,
we obtained 4 bulk datasets containing tumor-reactive T cells or cell groups from the GEO database under accession numbers GSE114944, GSE132810, GSE141878 and GSE145596.
bulk 是如何区分tumor-reactive T cells group的?
image-20220715145527011
single 呢?
image-20220715145821121
使用了多种GSVA、ssgsea (22), zscore (23) and plage (24) 方法计算score。
接着还用了多个bulk 黑色素瘤数据,使用cibersoft 估计其中T 细胞比例,并同样使用gsva 计算基因集得分:
image-20220715152011932
表现出二者的相关性。
将tcga 黑色素瘤病人按照bulk 结果计算基因集得分(gsva),区分病人:
image-20220715152431253
differentially expressed genes were mostly upregulated in the TRS-high group compared to the TRS-low group, including chemokines and cytotoxic-related genes
富集结果也显示上调基因和免疫激活相关:immune activation, such as lymphocyte activation, cytokine signaling in immune system, and inflammatory response
image-20220715152750156
分组查看对应外显子结果的突变高频基因:
image-20220715152916258
突变情况显著差异的基因包括:
image-20220715152950954
而且发现高TRS组burden 显著高:
ps:这么看其实power 也不是很足啊。仅仅是significant
image-20220715153035137
In addition, we found that TRS_high group exhibited higher scores of intratumor heterogeneity and Th17 cell, and lower scores of wounding healing and homologous recombination defects:
image-20220715153319556
区分TRS 高低得分病人:
image-20220715153556349
采用performed stepwise Akaike’s Information Criterion (AIC) 对基因集进行精简,得到CTLA4, CXCR6, LYST, CD38, GBP2 and HLA-DRB5,并利用这些基因计算TRS 区分病人生存分析:
image-20220715153751469
其他富集方法(zscore、plage等)也都得到了显著的结果:
image-20220715154823915
这个B 图,咋回事?
并且结合其他临床数据,和refined trs 做风险森林:
image-20220715154958046
同时也在先前验证使用的黑色素瘤bulk基因集做生存分析:
image-20220715155221388
For the 8 published signatures, we calculated their risk scores as summation of the product of coefficient and expression level of each gene:
image-20220715155426384
相比其他的signature,trs 表现最好。
还有其他的评价标准:significance of patient stratification (E), time-dependent AUC (F), C-index (G) and restricted mean survival time (RMST) ratio between high-risk and low-risk groups (H).
image-20220715155556210
以及重新算其他几个出版的signature 的gsva 得分结果去和TRS 比较。依然打不过后者。
Three datasets were used for predicting the response to immunotherapy, including ERP105482 from ENA (https://www.ebi.ac.uk/ena/browser/home[2]), GSE35640 from GEO (https://www.ncbi.nlm.nih.gov/geo/[3]), and the dataset Allen2015 which was kindly provided by the corresponding author (PMID: 26359337).
ICB therapies were designed to reinvigorate efficacious antitumor immune responses by targeting inhibitory receptors on T cells.
Therefore, we next examined whether the refined TRS could predict ICB clinical response utilizing two cohorts
image-20220715160138482
TRS 得分和ICB therapy targets 表达情况。
而且按照 all patients were classified as responders or nonresponders according to the RECIST criteria 是否相应区分病人,TRS 得分也有显著差异:
image-20220715160247180
用TRS 来预测病人的免疫治疗相应结果也不错。
[1]
Frontiers | Single-Cell Transcriptomic Analysis Reveals a Tumor-Reactive T Cell Signature Associated With Clinical Outcome and Immunotherapy Response In Melanoma (frontiersin.org): https://www.frontiersin.org/articles/10.3389/fimmu.2021.758288/full
[2]
https://www.ebi.ac.uk/ena/browser/home: https://www.ebi.ac.uk/ena/browser/home
[3]
https://www.ncbi.nlm.nih.gov/geo/: https://www.ncbi.nlm.nih.gov/geo/