首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

作者头像
松鼠爱吃饼干
发布2022-12-05 21:38:40
发布2022-12-05 21:38:40
47100
代码可运行
举报
文章被收录于专栏:Python分享Python分享
运行总次数:0
代码可运行

前言

最近天气异常暴热,看到某些地方地表温度居然达到70°,这就离谱 所以就想采集一下天气的数据,做个可视化图,回忆一下去年的天气情况

开发环境

  • python 3.8 运行代码
  • pycharm 2021.2 辅助敲代码
  • requests 第三方模块

有疑问的同学,或者想要Python相关资料的可以加群:326937069 找管理员领取资料和一对一解答

天气数据采集

1. 发送请求

代码语言:javascript
代码运行次数:0
运行
复制
url = 'https://tianqi.2345.com/Pc/GetHistory?areaInfo%5BareaId%5D=54511&areaInfo%5BareaType%5D=2&date%5Byear%5D=2022&date%5Bmonth%5D=5'response = requests.get(url)print(response)

返回<Response [200]>: 请求成功

2. 获取数据

代码语言:javascript
代码运行次数:0
运行
复制
print(response.json())

3. 解析数据 天气信息提取出来

结构化数据解析:Python字典取值 非结构化数据解析:网页结构

代码语言:javascript
代码运行次数:0
运行
复制
json_data = response.json()
html_data = json_data['data']
select = parsel.Selector(html_data)
trs = select.css('table tr')for tr in trs[1:]:    # 网页结构
    # html网页 <td>asdfwaefaewfweafwaef</td> <a></a> <div></div>
    # ::text: 我需要这个 标签里面的文本内容
    td = tr.css('td::text').getall()    print(td)

4. 保存数据

代码语言:javascript
代码运行次数:0
运行
复制
with open('天气数据.csv', encoding='utf-8', mode='a', newline='') as f:
    csv_writer = csv.writer(f)
    csv_writer.writerow(td)

数据可视化效果

读取数据

代码语言:javascript
代码运行次数:0
运行
复制
data = pd.read_csv('天气数据.csv')
data

分割日期/星期

代码语言:javascript
代码运行次数:0
运行
复制
data[['日期','星期']] = data['日期'].str.split(' ',expand=True,n=1)
data

去除多余字符

代码语言:javascript
代码运行次数:0
运行
复制
data[['最高温度','最低温度']] = data[['最高温度','最低温度']].apply(lambda x: x.str.replace('°',''))
data.head()

北上广深2021年10月份天气热力图分布

代码语言:javascript
代码运行次数:0
运行
复制
import matplotlib.pyplot as pltimport matplotlib.colors as mcolorsimport seaborn as sns#设置全局默认字体 为 雅黑plt.rcParams['font.family'] = ['Microsoft YaHei'] 
# 设置全局轴标签字典大小plt.rcParams["axes.labelsize"] = 14  # 设置背景sns.set_style("darkgrid",{"font.family":['Microsoft YaHei', 'SimHei']})  
# 设置画布长宽 和 dpiplt.figure(figsize=(18,8),dpi=100)# 自定义色卡cmap = mcolors.LinearSegmentedColormap.from_list("n",['#95B359','#D3CF63','#E0991D','#D96161','#A257D0','#7B1216']) 
# 绘制热力图ax = sns.heatmap(data_pivot, cmap=cmap, vmax=30, 
                 annot=True, # 热力图上显示数值
                 linewidths=0.5,
                ) 
# 将x轴刻度放在最上面ax.xaxis.set_ticks_position('top') 
plt.title('北京最近10个月天气分布',fontsize=16) #图片标题文本和字体大小plt.show()

北京2021年每日最高最低温度变化

代码语言:javascript
代码运行次数:0
运行
复制
color0 = ['#FF76A2','#24ACE6']
color_js0 = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFC0CB'}, {offset: 1, color: '#ed1941'}], false)"""color_js1 = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#009ad6'}], false)"""tl = Timeline()for i in range(0,len(data_bj)):
    coordy_high = list(data_bj['最高温度'])[i]
    coordx = list(data_bj['日期'])[i]
    coordy_low = list(data_bj['最低温度'])[i]
    x_max = list(data_bj['日期'])[i]+datetime.timedelta(days=10)
    y_max = int(max(list(data_bj['最高温度'])[0:i+1]))+3
    y_min = int(min(list(data_bj['最低温度'])[0:i+1]))-3
    title_date = list(data_bj['日期'])[i].strftime('%Y-%m-%d')
    c = (
        Line(
            init_opts=opts.InitOpts(
            theme='dark',            #设置动画
            animation_opts=opts.AnimationOpts(animation_delay_update=800),#(animation_delay=1000, animation_easing="elasticOut"),
            #设置宽度、高度
            width='1500px',
            height='900px', )
        )
        .add_xaxis(list(data_bj['日期'])[0:i])
        .add_yaxis(
            series_name="",
            y_axis=list(data_bj['最高温度'])[0:i], is_smooth=True,is_symbol_show=False,
            linestyle_opts={                   'normal': {                       'width': 3,                       'shadowColor': 'rgba(0, 0, 0, 0.5)',                       'shadowBlur': 5,                       'shadowOffsetY': 10,                       'shadowOffsetX': 10,                       'curve': 0.5,                       'color': JsCode(color_js0)
                   }
               },
            itemstyle_opts={            "normal": {                "color": JsCode(                    """new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                offset: 0,
                color: '#ed1941'
            }, {
                offset: 1,
                color: '#009ad6'
            }], false)"""
                ),                "barBorderRadius": [45, 45, 45, 45],                "shadowColor": "rgb(0, 160, 221)",
            }
        },

        )
        .add_yaxis(
            series_name="",
            y_axis=list(data_bj['最低温度'])[0:i], is_smooth=True,is_symbol_show=False,#             linestyle_opts=opts.LineStyleOpts(color=color0[1],width=3),
            itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js1)),
            linestyle_opts={                   'normal': {                       'width': 3,                       'shadowColor': 'rgba(0, 0, 0, 0.5)',                       'shadowBlur': 5,                       'shadowOffsetY': 10,                       'shadowOffsetX': 10,                       'curve': 0.5,                       'color': JsCode(color_js1)
                   }
               },
        )
        .set_global_opts(
            title_opts=opts.TitleOpts("北京2021年每日最高最低温度变化\n\n{}".format(title_date),pos_left=330,padding=[30,20]),
            xaxis_opts=opts.AxisOpts(type_="time",max_=x_max),#, interval=10,min_=i-5,split_number=20,axistick_opts=opts.AxisTickOpts(length=2500),axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="grey"))
            yaxis_opts=opts.AxisOpts(min_=y_min,max_=y_max),#坐标轴颜色,axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="grey"))
        )
    )
    tl.add(c, "{}".format(list(data_bj['日期'])[i]))
    tl.add_schema(
        axis_type='time',
        play_interval=100,  # 表示播放的速度
        pos_bottom="-29px",
        is_loop_play=False, # 是否循环播放
        width="780px",
        pos_left='30px',
        is_auto_play=True,  # 是否自动播放。
        is_timeline_show=False)
tl.render_notebook()

北上广深10月份每日最高气温变化

代码语言:javascript
代码运行次数:0
运行
复制
# 背景色background_color_js = (    "new echarts.graphic.LinearGradient(0, 0, 0, 1, "
    "[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)")# 线条样式linestyle_dic = { 'normal': {                    'width': 4,  
                    'shadowColor': '#696969', 
                    'shadowBlur': 10,  
                    'shadowOffsetY': 10,  
                    'shadowOffsetX': 10,  
                    }
                }
    
timeline = Timeline(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js),
                                            width='980px',height='600px'))


bj, gz, sh, sz= [], [], [], []
all_max = []
x_data = data_10[data_10['城市'] == '北京']['日'].tolist()for d_time in range(len(x_data)):
    bj.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='北京')]["最高温度"].values.tolist()[0])
    gz.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='广州')]["最高温度"].values.tolist()[0])
    sh.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='上海')]["最高温度"].values.tolist()[0])
    sz.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='深圳')]["最高温度"].values.tolist()[0])
    
    line = (
        Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js),
                                     width='980px',height='600px'))
        .add_xaxis(
            x_data,
                  )
        
        .add_yaxis(            '北京',
            bj,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
        )
  
        .add_yaxis(            '广州',
            gz,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
        )
 
        .add_yaxis(            '上海',
            sh,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
            
        )
 
        .add_yaxis(            '深圳',
            sz,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
            
        )
        
        .set_series_opts(linestyle_opts=linestyle_dic)
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='北上广深10月份最高气温变化趋势',
                pos_left='center',
                pos_top='2%',
                title_textstyle_opts=opts.TextStyleOpts(color='#DC143C', font_size=20)),
            
            tooltip_opts=opts.TooltipOpts(
                trigger="axis",
                axis_pointer_type="cross",
                background_color="rgba(245, 245, 245, 0.8)",
                border_width=1,
                border_color="#ccc",
                textstyle_opts=opts.TextStyleOpts(color="#000"),
        ),
            xaxis_opts=opts.AxisOpts(#                 axislabel_opts=opts.LabelOpts(font_size=14, color='red'),#                 axisline_opts=opts.AxisLineOpts(is_show=True,#                 linestyle_opts=opts.LineStyleOpts(width=2, color='#DB7093'))
                is_show = False
            ),
                
            
            yaxis_opts=opts.AxisOpts(
                name='最高气温',            
                is_scale=True,#                 min_= int(min([gz[d_time],sh[d_time],sz[d_time],bj[d_time]])) - 10,
                max_= int(max([gz[d_time],sh[d_time],sz[d_time],bj[d_time]])) + 10,
                name_textstyle_opts=opts.TextStyleOpts(font_size=16,font_weight='bold',color='#5470c6'),
                axislabel_opts=opts.LabelOpts(font_size=13,color='#5470c6'),
                splitline_opts=opts.SplitLineOpts(is_show=True, 
                                                  linestyle_opts=opts.LineStyleOpts(type_='dashed')),
                axisline_opts=opts.AxisLineOpts(is_show=True,
                                        linestyle_opts=opts.LineStyleOpts(width=2, color='#5470c6'))
            ),
            legend_opts=opts.LegendOpts(is_show=True, pos_right='1%', pos_top='2%',
                                        legend_icon='roundRect',orient = 'vertical'),
        ))
    
    timeline.add(line, '{}'.format(x_data[d_time]))

timeline.add_schema(
    play_interval=1000,          # 轮播速度
    is_timeline_show=True,      # 是否显示 timeline 组件
    is_auto_play=True,          # 是否自动播放
    pos_left="0",
    pos_right="0")
timeline.render_notebook()
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-06-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 松鼠爱吃饼干 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
    • 开发环境
  • 有疑问的同学,或者想要Python相关资料的可以加群:326937069 找管理员领取资料和一对一解答
  • 天气数据采集
    • 1. 发送请求
    • 2. 获取数据
  • 3. 解析数据 天气信息提取出来
    • 4. 保存数据
  • 数据可视化效果
    • 读取数据
    • 分割日期/星期
    • 去除多余字符
    • 北上广深2021年10月份天气热力图分布
    • 北京2021年每日最高最低温度变化
    • 北上广深10月份每日最高气温变化
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档