前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >paddle DeBug 三步定位PARL飞桨报错原因,快速解决程序问题

paddle DeBug 三步定位PARL飞桨报错原因,快速解决程序问题

作者头像
汀丶人工智能
发布2022-12-01 16:44:34
8370
发布2022-12-01 16:44:34
举报
文章被收录于专栏:NLP/KG

相关文章:

【一】-环境配置+python入门教学

【二】-Parl基础命令

【三】-Notebook、&pdb、ipdb 调试

【四】-强化学习入门简介

【五】-Sarsa&Qlearing详细讲解

【六】-DQN

【七】-Policy Gradient

【八】-DDPG

【九】-四轴飞行器仿真

飞桨PARL_2.0&1.8.5(遇到bug调试修正)

三步定位PARL飞桨报错原因,快速解决程序问题


一、AI Studio 项目详解【VisualDL工具】

二、AI Studio 项目详解【环境使用说明、脚本任务】

三、AI Studio 项目详解【分布式训练-单机多机】

四、AI Studio 项目详解【图形化任务】

五、AI Studio 项目详解【在线部署及预测】

oschina_飞桨专区:https://www.oschina.net/group/paddlepaddle


三步定位PARL飞桨报错原因,快速解决程序问题

飞桨报错信息总体上分为两种:

  • 一种是直接在Python层拦截报出的错误,这种问题一般比较直观,根据Python原生的报错栈即可以定位程序中的问题,和大家使用Python写程序报错分析的流程一致;
  • 一种是飞桨的C++ core中的报错,这种报错包含的信息量较大。下面我们以此类报错信息的为例,解读分析过程

首先我们了解下目前飞桨最新版本报错信息的结构,如下图:

报错信息为四段式结构,由上至下依次为Python默认错误信息栈、C++错误信息栈、飞桨Python错误信息栈(仅声明式编程模式)、核心错误概要。

  • Python默认错误信息栈:执行Python程序默认记录的执行路径,对定位报错位置很有帮助。这是Python本身特性,此处不展开介绍。
  • C++错误信息栈:程序在Paddle C++ core中的错误路径,即为模块paddle.fluid.core中的程序执行路径,这部分信息对开发者帮助有限。但当开发者通过Issue向飞桨开发人员提问时,提供C++报错栈的信息将有助于开发人员快速定位问题。(目前C++错误信息栈仅支持Unix平台,Windows平台暂不支持)
  • Paddle Python错误信息栈:为什么这里还有一个Paddle Python错误信息栈呢?因为在声明式编程模式(静态图)下,模型编译和执行是分离的。执行时报错的路径由Python默认程序栈记录,但这并不能告知用户具体出错的程序位置,因此对于算子类型的API,飞桨额外记录了编译时的执行路径,帮助开发者定位具体代码出错的位置,该部分信息对于调试具有较大意义。
  • 核心错误概要:信息包含错误类型、错误特征、概要提示、出错文件名与行号、出错算子名等,这些信息不仅有助于开发者理解错误,也有助于迅速定位错误。

3步快速定位问题

当使用飞桨遇到报错提示时,定位流程是啥样子的呢?请对应上文提到的飞桨报错信息结构图,按如下流程逐步分析。

报错信息分析流程

下面结合示例,向大家讲解飞桨的报错信息的分析过程(示例使用飞桨2020年7月1日的develop版本)。飞桨支持两种编程模式,声明式编程模式(静态图)和命令式编程模式(动态图),我们将逐一介绍。

执行如下静态图示例代码:

代码语言:javascript
复制
import paddle.fluid as fluid
import numpy

# 1. 网络结构定义
x = fluid.layers.data(name='X', shape=[-1, 13], dtype='float32')
y = fluid.layers.data(name='Y', shape=[-1, 1], dtype='float32')
predict = fluid.layers.fc(input=x, size=1, act=None)
loss = fluid.layers.square_error_cost(input=predict, label=y)
avg_loss = fluid.layers.mean(loss)

# 2. 优化器配置
fluid.optimizer.SGD(learning_rate=0.01).minimize(avg_loss)

# 3. 执行环境准备
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())

# 4. 执行网络
x = numpy.random.random(size=(8, 12)).astype('float32')
y = numpy.random.random(size=(8, 1)).astype('float32')
loss_data, = exe.run(fluid.default_main_program(), feed={'X': x, 'Y': y}, fetch_list=[avg_loss.name])

代码执行后的报错信息如下:

代码语言:javascript
复制
Traceback (most recent call last):
  File "paddle_error_case1.py", line 24, in <module>
    loss_data, = exe.run(fluid.default_main_program(), feed={'X': x, 'Y': y}, fetch_list=[avg_loss.name])
  File "/usr/local/lib/python3.5/dist-packages/paddle/fluid/executor.py", line 1079, in run
    six.reraise(*sys.exc_info())
  File "/usr/local/lib/python3.5/dist-packages/six.py", line 696, in reraise
    raise value
  File "/usr/local/lib/python3.5/dist-packages/paddle/fluid/executor.py", line 1074, in run
    return_merged=return_merged)
  File "/usr/local/lib/python3.5/dist-packages/paddle/fluid/executor.py", line 1162, in _run_impl
    use_program_cache=use_program_cache)
  File "/usr/local/lib/python3.5/dist-packages/paddle/fluid/executor.py", line 1237, in _run_program
    fetch_var_name)
paddle.fluid.core_avx.EnforceNotMet: 

--------------------------------------------
C++ Call Stacks (More useful to developers):
--------------------------------------------
0   std::string paddle::platform::GetTraceBackString<std::string const&>(std::string const&, char const*, int)
1   paddle::platform::EnforceNotMet::EnforceNotMet(std::string const&, char const*, int)
2   paddle::operators::MulOp::InferShape(paddle::framework::InferShapeContext*) const
3   paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, paddle::platform::Place const&, paddle::framework::RuntimeContext*) const
4   paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, paddle::platform::Place const&) const
5   paddle::framework::OperatorBase::Run(paddle::framework::Scope const&, paddle::platform::Place const&)
6   paddle::framework::Executor::RunPartialPreparedContext(paddle::framework::ExecutorPrepareContext*, paddle::framework::Scope*, long, long, bool, bool, bool)
7   paddle::framework::Executor::RunPreparedContext(paddle::framework::ExecutorPrepareContext*, paddle::framework::Scope*, bool, bool, bool)
8   paddle::framework::Executor::Run(paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool, std::vector<std::string, std::allocator<std::string > > const&, bool, bool)

------------------------------------------
Python Call Stacks (More useful to users):
------------------------------------------
  File "/usr/local/lib/python3.5/dist-packages/paddle/fluid/framework.py", line 2799, in append_op
    attrs=kwargs.get("attrs", None))
  File "/usr/local/lib/python3.5/dist-packages/paddle/fluid/layer_helper.py", line 43, in append_op
    return self.main_program.current_block().append_op(*args, **kwargs)
  File "/usr/local/lib/python3.5/dist-packages/paddle/fluid/layers/nn.py", line 349, in fc
    "y_num_col_dims": 1})
  File "paddle_error_case1.py", line 9, in <module>
    predict = fluid.layers.fc(input=x, size=1, act=None)

----------------------
Error Message Summary:
----------------------
InvalidArgumentError: After flatten the input tensor X and Y to 2-D dimensions matrix X1 and Y1, the matrix X1's width must be equal with matrix Y1's height. But received X's shape = [8, 12], X1's shape = [8, 12], X1's width = 12; Y's shape = [13, 1], Y1's shape = [13, 1], Y1's height = 13.
  [Hint: Expected x_mat_dims[1] == y_mat_dims[0], but received x_mat_dims[1]:12 != y_mat_dims[0]:13.] at (/work/paddle/paddle/fluid/operators/mul_op.cc:83)
  [operator < mul > error]

参考飞桨报错信息分析流程对这个错误示例进行剖析。

1. 首先分析代码核心错误概要。依据统一的报错结构,开发者可以快速的找到报错原因。

从示例中可获得如下信息:

这是一个参数错误;出错的Op是mul;mul Op输入的Tensor X矩阵的宽度,即第2维的大小需要和输入Tensor Y矩阵的高度,即第一维的大小相等,才可以进行正常的矩阵乘法;给出了具体的输入X与Y的维度信息即出错维度的值,有一处的维度写错了,可能是13误写成了12。

目前飞桨有12种错误类型,更多介绍请查看《报错信息文案书写规范》,链接如下:https://github.com/[PaddlePaddle](https://www.oschina.net/action/visit/ad?id=1185)/[Paddle](https://www.oschina.net/action/visit/ad?id=1185)/wiki/[Paddle](https://www.oschina.net/action/visit/ad?id=1185)-Error-Message-Writing-Specification

2. 其次分析Paddle 编译时Python错误信息栈,发现出错的代码位置如下:

Paddle插入的Python错误信息栈为了和C++栈的调用顺序保持一致,最下面的信息是用户代码的位置,这和原生python错误信息栈的顺序有所区别。这里我们可以得知,是调用fc的时候出错的,fc中包含一个乘法运算和一个加法运算,根据前面的信息可以得知是此处的乘法运算的输入数据存在问题。至此,通过检查代码,可以找到错误位置:

将代码中的12改为13,即可解决该问题。

  1. (可选)通常出错场景较为简单时,C++错误信息栈可以不关心。但如果用户在解决时遇到困难,需要飞桨开发人员协助解决时,需要反馈此信息,帮助开发人员快速得知底层的出错执行逻辑。例如在这个例子中,我们能够得知程序的执行路径为Run -> RunPreParedContext -> Run -> RunImpl -> MulOp::InferShape,InferShape是检查算子输入输出及参数维度的方法,由此可以推断出,本错误是由于Mul算子的输入参数维度出错导致。

飞桨命令式编程模式

(动态图)报错解读

动态图不区分网络模型的编译期和执行期,报错信息中不需要再插入编译时的python信息栈。执行如下动态图示例代码:

代码语言:javascript
复制
import numpy
import paddle.fluid as fluid

place = fluid.CPUPlace()
with fluid.dygraph.guard(place):
    x = numpy.random.random(size=(10, 2)).astype('float32')
    linear = fluid.dygraph.Linear(1, 10)
    data = fluid.dygraph.to_variable(x)
    res = linear(data)

代码执行后的报错信息如下:

代码语言:javascript
复制
/work/scripts {master} python paddle_error_case2.py 
Traceback (most recent call last):
  File "paddle_error_case2.py", line 9, in <module>
    res = linear(data)
  File "/usr/local/lib/python3.5/dist-packages/paddle/fluid/dygraph/layers.py", line 600, in __call__
    outputs = self.forward(*inputs, **kwargs)
  File "/usr/local/lib/python3.5/dist-packages/paddle/fluid/dygraph/nn.py", line 965, in forward
    'transpose_Y', False, "alpha", 1)
paddle.fluid.core_avx.EnforceNotMet: 

--------------------------------------------
C++ Call Stacks (More useful to developers):
--------------------------------------------
0   std::string paddle::platform::GetTraceBackString<std::string const&>(std::string const&, char const*, int)
1   paddle::platform::EnforceNotMet::EnforceNotMet(std::string const&, char const*, int)
2   paddle::operators::MatMulOp::InferShape(paddle::framework::InferShapeContext*) const
3   paddle::imperative::PreparedOp::Run(paddle::imperative::NameVarBaseMap const&, paddle::imperative::NameVarBaseMap const&, paddle::framework::AttributeMap const&)
4   paddle::imperative::Tracer::TraceOp(std::string const&, paddle::imperative::NameVarBaseMap const&, paddle::imperative::NameVarBaseMap const&, paddle::framework::AttributeMap, paddle::platform::Place const&, bool)
5   paddle::imperative::Tracer::TraceOp(std::string const&, paddle::imperative::NameVarBaseMap const&, paddle::imperative::NameVarBaseMap const&, paddle::framework::AttributeMap)

----------------------
Error Message Summary:
----------------------
InvalidArgumentError: Input X's width should be equal to the Y's height, but received X's shape: [10, 2],Y's shape: [1, 10].
  [Hint: Expected mat_dim_x.width_ == mat_dim_y.height_, but received mat_dim_x.width_:2 != mat_dim_y.height_:1.] at (/work/paddle/paddle/fluid/operators/matmul_op.cc:411)
  [operator < matmul > error]

同样,我们可以依据前面讲述的步骤对报错进行分析。

  1. 先分析核心错误概要,该错误与前面的实例类似,也是输入数据的维度和预期不一致,出错的Op是matmul。
  2. 再分析Python报错信息栈,可以得知出错的代码位置为:

通过检查代码,也可以比较容易地定位到错误位置在:

将代码中的2改为1,即可解决该问题。

转载链接:https://my.oschina.net/u/4067628/blog/4462526

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021-04-08,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 三步定位PARL飞桨报错原因,快速解决程序问题
    • 飞桨报错信息总体上分为两种:
      • 3步快速定位问题
        • 报错信息分析流程
          • 参考飞桨报错信息分析流程对这个错误示例进行剖析。
            • 1. 首先分析代码核心错误概要。依据统一的报错结构,开发者可以快速的找到报错原因。
            • 2. 其次分析Paddle 编译时Python错误信息栈,发现出错的代码位置如下:
          • 飞桨命令式编程模式
            • (动态图)报错解读
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档