前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >诺亚财富 X Hologres : 统一OLAP分析引擎,全面打造金融数字化分析平台

诺亚财富 X Hologres : 统一OLAP分析引擎,全面打造金融数字化分析平台

作者头像
大数据技术架构
发布2022-12-01 15:57:44
7020
发布2022-12-01 15:57:44
举报
文章被收录于专栏:大数据技术架构

客户简介

诺亚控股有限公司以“诺亚财富”为品牌,源起于中国,是首家在港美两地上市的中国独立财富管理机构,首家开创了财富管理和资产管理的双轮驱动业务模式,同时也是国内首家获得标准普尔“投资级”评级的财富管理公司,公司业务涵盖财富管理、资产管理和其他业务。诺亚数据智能部门负责公司大数据体系框架建设,主要工作是支撑日常的BI分析,数据看板,人群画像,自助分析等场景。

在公司数字化转型的背景下,业务增长带来了数据量的激增,不同的数据需求衍生出各种数据服务,不同的数据服务选择不同的数据库和数仓技术,比如MySQL,Impala, Greenplum,ElasticSearch等。为了最大化的降低运维成本,提供高性能的数据服务,做到真正的极速统一,从2021年上半年开始,诺亚数据智能部门开始上云,将自建CDH替换成阿里云统一大数据平台,同时正式引入Hologres,替换核心的Impala OLAP分析部分,提升数据查询效率,全面打造金融数字化分析平台。因此在本文中,我们将会详细介绍诺亚从CDH迁移阿里云大数据平台的前因后果,以帮助更多的业务更加方便快捷的建设实时数仓。

业务挑战

自建CDH组件多运维难、交易指标多元查询慢

为了支持业务,诺亚原大数据架构采用Impala和CDH构架构建,架构图如下:

在最初的架构中,我们从Cloudera购买了License 基于CDH 搭建了一套数据服务平台:上游的源数据库主要是 MySQL,Oracle,Mongo等 ,业务相关的数据和部分日志数据都记录在里面。我们通过 DataX 和 Sqoop 将数据库中的数据导入到 HDFS,通过 Hive的元数据映射生成 Schema,并接入 Impala 实现数据的即席查询。数据仓库的分层和建模全部都在 Hive 中完成,借助 LDAP 和 Sentry 进行用户权限管理,分析师在HUE中进行查询。

对于实时指标,我们通过Debezium 采集 MySQL 的 Binlog 日志,解析到Flink中对数据进行处理建模,并关联Kafka中的埋点日志数据,生成实时指标写入到 MySQL 中。该流程适用于大部分的报表需求,但是由于 MySQL 对于 OLAP 的任务执行效率较低,在单日报表超过50万记录的情况下,一些多维分析结果可能需要8+秒以上才能返回,非常影响报表查看体验。同时我们也提供了相应的数据服务,分析师通过 JDBC 的连接方式对数仓数据进行查询,数仓数据通过数据API直接应用于一线业务,相应的 BI 报表展示也基于 Impala 计算实现。

随着业务的增长,此架构面临如下挑战:

1、业务方面:

  • 数据分析性能不足:因为我们的用户可能多年的存量和交易指标特别多,数据需要复杂关联查询才能得到数据指标,还有高并发查询时间周期比较长的数据,返回时间太长,业务方体验很差。
  • 实时分析场景不足:历史的数据架构导致数据延迟频繁,无法满足业务方及时做出决策。
  • 查询引擎不统一 :系统可能有多种查询引擎组成,每一种查询引擎都有自己的DSL,增加了用户的学习成本,同时需要跨多数据源查询也是一种不方便的的事,异构查询引擎也容易形成数据孤岛。
  • 用数据难 :由于数据分布在各个系统中,用户无法在一个系统满足所有的数据需求。特别是一线的运营和分析同学,需要通过各个系统导出大量的excel表格的方式做数据分析,费时费力,同时也存在一定的数据隐患。

2、技术方面:

  • 使用的组件过多:实现不同的需求需要不同的组件,例如批处理采用的Hive , 即席查询使用的Greenplum和 Impala ,这对于数仓内部的管理提出了较高的要求,对于分析师和报表同学不够友好。
  • 运维难度大:CDH 虽然是商业软件平台,提供了界面化操作,但是大多数组件依然需要自己去探索维护,并且官方文档严重缺失。由于CDH已经不在中国市场提供更新,暴露出来的漏洞也越来越多,并且未来的不确定性也在增加,缺乏稳定性。
  • 大数据量查询较慢:我们使用Impala进行加速查询,但是数据文件没有有效的索引,对于数据量的扫描过大的查询,有时候需要几十秒才能返回结果。并且自身的SQL优化器比较粗糙,SQL稍微写的不够规范,就会产生不必要的资源开销,导致查询卡死。
  • Impala的自身的缺陷:在表数据或者表结构更新的情况下,需要手动的刷新元数据才能查询到最新的数据,极其不方便。
  • 成本高:业务发展快,产生数据快速膨胀,Impala的线性扩容成本比较高。

技术选项多维对比

为了解决上面的痛点,我们想要对架构进行升级,在寻求解决方案的过程中,OLAP分析是我们非常看重的一个部分,因此我们根据业务需求评估了四个维度:

功能

Hologres

Starrocks

Clickhouse

标准SQL

支持

支持,兼容Mysql协议

不完全支持

高并发查询

端到端的全异步处理框架,可以避免高并发系统的瓶颈,充分利用资源,并且最大可能地避免存储计算分离系统带来的读数据延迟的影响。

有限支持

不支持高并发,官方建议QPS 为 100

运维

完善的dashboard,包括查询日志,慢SQL等都可以查询

社区版不提供dashboard,需要自己实现自动化部署

依赖zookeeper,运维成本高

性能

Hologres支持行存储、列存储和行列共存多种存储模式, 可以根据业务场景选择合适的存储类型

大宽表和多表join性能比ck更好

单机性能强悍,但是单表查询效率快。

社区(技术支持)

响应时间较快,版本迭代快。

较快

较慢,社区活跃度较低

解决方案

自建CDH迁移上云,Hologres助力统一OLAP分析

经过4个维度的充分考虑和论证,我们决定将自建CDH迁移成阿里云大数据平台。迁移后诺亚基于阿里云大数据平台架构图如下:

诺亚数据智能中心在2021年进行了上云的计划,全面实现数据中台的云原生,抛弃掉原来的CDH那套数据架构,我们花了一年的时间进行了整个数据中台的改造和迁移,原来的数仓基于impala的表大概有1w+ 张,烟囱式开发,老架构的数仓是DL层 + DH 层,没有对于数据进行分层和沉淀 ,导致数据冗余严重,任务之间互相依赖严重,没有很好的进行对于业务模块的划分。

整个数据中台依托于DataWorks,离线部分在MaxCompute中进行,通过DataWorks的数据同步模块把离线部分同步到MaxCompute和实时部分同步到Hologres,然后利用Flink的把神策埋点的Kafka数据清洗同步到Hologres中,同时也通过Hologres的外表把MaxCompute的数据迁移到Hologres中,保证统一OLAP分析引擎。

在迁移的过程中,我们是两套中台并行,新的业务我们直接依赖阿里云进行开发,老的任务,我们根据业务线对于数仓进行了重构和分层,ODS , CDM (DIM,DWD,DWS) ,ADS 层,对于表进行了梳理和整合,计算资源和任务减少了一半,任务之间的依赖关系通过DAG图清晰明了,不要再为了改一个脚本,进行俄罗斯套娃式的改造脚本,大大节省了人力成本。

业务价值

更简的架构,更快的查询,更低的成本,全面金融数字化分析

通过将将技术架构从自建CDH全面上云后,对我们以及业务来说,都带来了非常多的好处,主要有以下几点:

  • 原来的IDC的CDH ,每年花费在机房的费用也很高,现在上云也满足了公司降本增效的整体方针,自动上云之后,我们在大数据运维层面的投入变少,让一些基础设施、基础服务交给阿里云去做 ,更多的时间专注于业务,缩短了需求的交付时间,同时也保证了交付的质量 ;其次,阿里云的云原生的拓展性,弹性计算,可以随时的扩容缩容,能够满足业务膨胀带来的紧急需求,高效稳定。阿里云的平台能力很强,对于开发,分析师都很友好,上手能力很快,操作简单便捷,学习成本较低。
  • 实时的广告投放多维分析,帮助市场部门及时提供数据支撑,及时调整投放策略,提高投资回报率。原来的神策埋点数据是通过Kafka直接进入到HBase,然后通过挂载hive的外表的方式来做各种维度的聚合,指标类的计算,然后再借助Impala的加速查询,这样的方式整个数据链路太长,经常出现数据丢失的情况,无法满足业务方的真正的实时数据需求,后续我们把kafka的数据直接sink到Hologres中,借助于Hologres+ Flink的实时数仓的能力,满足业务部门的实时需求。
  • 作为用户指标的载体,完成用户画像等的精细化分析需求,为公司数字化赋能。精确的数据去重,Hologres兼容PostgreSQL生态,原生支持Roaring Bitmap函数。通过对标签表构建索引,将用户ID编码后以Bitmap格式保存,将关系运算转化Bitmap的交并差运算,进而加速实时计算性能。在超大规模用户属性洞察分析的场景中,使用RoaringBitmap组件能够实现亚秒级的查询响应。
  • 以Hologres作为业务部门访问数据仓库的入口和核心,完善交互式查询体验。使用Hologres,在性能上明显明显,之前千万级的表的查询在5s+ , 当前在查询在 300ms左右,查询平均性能提升 90%以上,目前整体已经迁移了全部的报表800张+。Hologres可以根据业务场景做行列存储的优化,既减少了运维压力,又对于查询性能提升明显。
  • 作为数据部门提供OneSevice的数据服务平台的底座,稳定性和高性能的支撑业务系统,提高了客户的体验感。原来提供的API是查询MySQL,但是面临一个问题就是数据量大和并发数大时,接口相应速度很慢,影响到客户的体验,后面我们借助于DataWorks的数据服务模块,把这块的接口的底层查询引擎全部切换到Hologres,接口又原来的平均800+ms缩减到 300+ms ,同时也减少了数同步,借助于Hologres和MaxCompute的生态完整性,直接刷成Hologres的外表,加速查询。
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-10-31,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据技术架构 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 自建CDH组件多运维难、交易指标多元查询慢
  • 更简的架构,更快的查询,更低的成本,全面金融数字化分析
相关产品与服务
专用宿主机
专用宿主机(CVM Dedicated Host,CDH)提供用户独享的物理服务器资源,满足您资源独享、资源物理隔离、安全、合规需求。专用宿主机搭载了腾讯云虚拟化系统,购买之后,您可在其上灵活创建、管理多个自定义规格的云服务器实例,自主规划物理资源的使用。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档