前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Java 理论概念·LRU 缓存淘汰算法

Java 理论概念·LRU 缓存淘汰算法

作者头像
数媒派
发布2022-12-01 14:56:32
5700
发布2022-12-01 14:56:32
举报
文章被收录于专栏:产品优化

LRU 缓存淘汰算法

本文为个人学习摘要笔记。 原文地址:聊聊缓存淘汰算法-LRU 实现原理

我们常用缓存提升数据查询速度,由于缓存容量有限,当缓存容量到达上限,就需要删除部分数据挪出空间,这样新数据才可以添加进来。缓存数据不能随机删除,一般情况下我们需要根据某种算法删除缓存数据。常用淘汰算法有 LRU,LFU,FIFO,本文说明 LRU 算法。

LRU 算法

LRU 即 Least Recently Used,这种算法认为最近使用的数据是热门数据,下一次很大概率将会再次被使用。而最近很少被使用的数据,很大概率下一次不再用到。当缓存容量的满时候,优先淘汰最近很少使用的数据。

假设现在缓存内部数据如下图,当调用缓存获取 key=1 的数据,LRU 算法需要将 1 这个节点移动到头结点,其余节点不变:

然后我们插入一个 key=8 节点,此时缓存容量到达上限,所以加入之前需要先删除数据,然后再将数据添加到头结点。由于每次查询都会将数据移动到头结点,未被查询的数据就将会下沉到尾部节点,尾部的数据就可以认为是最少被访问的数据,所以删除尾结点的数据。

这里总结一下 LRU 算法具体步骤:

  1. 新数据直接插入到列表头部
  2. 缓存数据被命中,将数据移动到列表头部
  3. 缓存已满的时候,移除列表尾部数据。

LRU 算法实现

上面例子中可以看到,LRU 算法需要添加头节点,删除尾结点。而链表添加节点/删除节点时间复杂度 O(1),非常适合当做存储缓存数据容器。但是不能使用普通的单向链表,单向链表有几点劣势:

  1. 每次获取任意节点数据,都需要从头结点遍历下去,这就导致获取节点复杂度为 O(N)。
  2. 移动中间节点到头结点,我们需要知道中间节点前一个节点的信息,单向链表就不得不再次遍历获取信息。

针对以上问题,可以结合散列表解决。使用散列表存储节点,获取节点的复杂度将会降低为 O(1)。节点移动问题可以在节点中再增加前驱指针,记录上一个节点信息,这样链表就从单向链表变成了双向链表。

综上使用双向链表加散列表结合体,数据结构如图所示:

在双向链表中特意增加两个『哨兵』节点,不用来存储任何数据。使用哨兵节点,增加/删除节点的时候就可以不用考虑边界节点不存在情况,简化编程难度,降低代码复杂度。

LRU 算法实现代码如下,为了简化 key ,val 都认为 int 类型:

代码语言:javascript
复制
public class LRUCache {

    Entry head, tail;
    int capacity;
    int size;
    Map<Integer, Entry> cache;


    public LRUCache(int capacity) {
        this.capacity = capacity;
        // 初始化链表
        initLinkedList();
        size = 0;
        cache = new HashMap<>(capacity + 2);
    }

    /**
     * 如果节点不存在,返回 -1.如果存在,将节点移动到头结点,并返回节点的数据。
     *
     * @param key
     * @return
     */
    public int get(int key) {
        Entry node = cache.get(key);
        if (node == null) {
            return -1;
        }
        // 存在移动节点
        moveToHead(node);
        return node.value;
    }

    /**
     * 将节点加入到头结点,如果容量已满,将会删除尾结点
     *
     * @param key
     * @param value
     */
    public void put(int key, int value) {
        Entry node = cache.get(key);
        if (node != null) {
            node.value = value;
            moveToHead(node);
            return;
        }
        // 不存在。先加进去,再移除尾结点
        // 此时容量已满 删除尾结点
        if (size == capacity) {
            Entry lastNode = tail.pre;
            deleteNode(lastNode);
            cache.remove(lastNode.key);
            size--;
        }
        // 加入头结点

        Entry newNode = new Entry();
        newNode.key = key;
        newNode.value = value;
        addNode(newNode);
        cache.put(key, newNode);
        size++;

    }

    private void moveToHead(Entry node) {
        // 首先删除原来节点的关系
        deleteNode(node);
        addNode(node);
    }

    private void addNode(Entry node) {
        head.next.pre = node;
        node.next = head.next;

        node.pre = head;
        head.next = node;
    }

    private void deleteNode(Entry node) {
        node.pre.next = node.next;
        node.next.pre = node.pre;
    }


    public static class Entry {
        public Entry pre;
        public Entry next;
        public int key;
        public int value;

        public Entry(int key, int value) {
            this.key = key;
            this.value = value;
        }

        public Entry() {
        }
    }

    private void initLinkedList() {
        head = new Entry();
        tail = new Entry();

        head.next = tail;
        tail.pre = head;

    }

    public static void main(String[] args) {

        LRUCache cache = new LRUCache(2);

        cache.put(1, 1);
        cache.put(2, 2);
        System.out.println(cache.get(1));
        cache.put(3, 3);
        System.out.println(cache.get(2));

    }
}

LRU 算法分析

缓存命中率是缓存系统的非常重要指标,如果缓存系统的缓存命中率过低,将会导致查询回流到数据库,导致数据库的压力升高。

结合以上分析 LRU 算法优缺点:

  • LRU 算法优势在于算法实现难度不大,对于对于热点数据,LRU 效率会很好。
  • LRU 算法劣势在于对于偶发的批量操作,比如说批量查询历史数据,就有可能使缓存中热门数据被这些历史数据替换,造成缓存污染,导致缓存命中率下降,减慢了正常数据查询。

LRU 算法改进方案

以下方案来源与 MySQL InnoDB LRU 改进算法,将链表拆分成两部分,分为热数据区,与冷数据区,如图所示:

改进之后算法流程将会变成下面一样:

  1. 访问数据如果位于热数据区,与之前 LRU 算法一样,移动到热数据区的头结点。
  2. 插入数据时,若缓存已满,淘汰尾结点的数据。然后将数据插入冷数据区的头结点。
  3. 处于冷数据区的数据每次被访问需要做如下判断:
    • 若该数据已在缓存中超过指定时间,比如说 1s,则移动到热数据区的头结点。
    • 若该数据存在在时间小于指定的时间,则位置保持不变。

对于偶发的批量查询,数据仅仅只会落入冷数据区,然后很快就会被淘汰出去。热门数据区的数据将不会受到影响,这样就解决了 LRU 算法缓存命中率下降的问题。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • LRU 缓存淘汰算法
    • LRU 算法
      • LRU 算法实现
        • LRU 算法分析
          • LRU 算法改进方案
          相关产品与服务
          对象存储
          对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档