前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >安卓dtmf识别_使用Goertzel算法识别DTMF信号

安卓dtmf识别_使用Goertzel算法识别DTMF信号

作者头像
全栈程序员站长
发布2022-11-16 18:08:53
7650
发布2022-11-16 18:08:53
举报
文章被收录于专栏:全栈程序员必看

Goertzel算法

Goertzel算法由Gerald Goertzel在1958年提出,用于数字信号处理,是属于离散傅里叶变换的范畴,目的是从给定的采样中求出某一特定频率信号的能量,用于有效性的评价。

这个算法有几个关键的参数:

采样率R,指的是需要分析的数据每秒钟有多少个采样

目标频率f,指的是需要检测并评价的这个频率的值

检测区段采样值数量N,也就是每N个采样这个算法会对频率f给出评价

检测区段包含目标频率的完整周期个数K

很显然,上述参数应该有这样的关系:

K = Nf / R

这个K值应该是一个整数,而且要大小合适。如果太大,不利于检测的时效,如果太小,则检测可能不准确。例如十几甚至二十几左右应该相对合理。例如R为8000,需要检测800hz的频率,N取值100,那么K为10,很不错。但是,需要检测的频率有时候并不那么整,例如697,那么N应该取值多少呢?N在1000以内,无法得到一个整数K,我们只能退而求其次,找一个四舍五入误差最小的。例如N取115,K的计算结果为10.019375,四舍五入为10,而且有较小的误差。

有了上述的参数,然后我们来计算每个采样在一个目标频率一个周期中所占的弧度ω。既然N个采样表达了K个周期(2π),那么ω应该这样计算:

ω = 2πK / N

这里需要注意的是,因为K值可能经过了四舍五入,所以上述两个公式必须先后计算,一定不能合在一起化简把K约掉!

然后,我们可以得到后期计算会频繁遇到的系数C:

C = 2cos(ω) = 2cos(2πK / N)

以上参数,我们都可以事先计算好,不必在每个采样分析中再次计算。之后,就开始针对N个采样进行分析计算

首先初始化:

Q1 = 0

Q2 = 0

然后按照顺序针对N个采样每一个值S(我认为这个S一般是一个16位的有符号整数,取值范围在-32768到32767之间,如果你得到的是已经进行过编码的媒体流,例如G.711编码,那么需要首先解码。当然也许采样值就是-128到127之间的单字节整数,那么这样对计算结果中的P值会影响巨大,DTMF识别的时候一些判断参数可能要调整),做如下计算:

Q0 = CQ1 – Q2 + S

Q2 = Q1

Q1 = Q0

上述计算完成之后,我们就可以得到在这N个采样中所体现的频率f的能量值P:

P = Q12 + Q22 – CQ1Q2

DTMF识别

以上是goertzel算法的全部思想。如果我们要将其用于DTMF识别,还需要做一些工作。DTMF识别,我们需要根据给定的一段时间的采样,能够最大限度地排除噪音的干扰,将有效的DTMF信号识别出来

我们知道DTMF有8个频率:697, 770, 852, 941, 1209, 1336, 1477, 1633,通过前4个频率和后4个频率的两两组合,确定16个符号。那么我们在对给定一段时间的采样进行处理的时候,就需要先将其分为每段为N个采样的多个采样区段,然后对每一区段针对8个频率分别运用goertzel算法进行计算得到每个频率的能量P

为了完成这些能量的计算,我们需要在开始针对8个不同的频率分别计算系数C,而参数N的选择非常关键,因为8个频率的K值都不同,我们要尽可能使得8个频率的K值四舍五入之后都误差尽可能小,经过检验,在采样率为8000的时候,N=205应该是一个最佳值,你可以做一个测试:

N=

针对N个采样值,对8个频率分别计算出了能量P之后,我们就可以开始评估这些能量值是否足以表明这N个采样中含有某个DTMF符号

DTMF符号和频率的对应关系如下:

f1209133614771633

679123A

770456B

852789C

941*0#D

我们从1209, 1336, 1477和1633四个频率对应的能量P中取最大值,记作Px,从679,770,852和941四个频率对应的能量P中取出最大值Py。那么Px和Py对应的频率组合极有可能代表识别出一个DTMF符号。但是,我们还需要做一系列的判断,来进一步评估:

Px和Py是否足够强大?我们可以设定一个门限,如果么Px和Py这两个任何一个低于这个门限,那么N个采样被评估为没有识别出DTMF符号。参考资料[2]中建议这个门限值为4*105。但是如果采样值的取值范围是-32768到32767的话,实际上计算出来的P值会非常大,这个门限设为4*109都可以。

Px和Py的差别是否太大?正常的DTMF信号,这两个能量应该接近,那么如果差别较大,我们视为无效。参考资料[2]中建议的方法为:如果Py < Px * 0.398,那么认为无效。如果Px < Py * 0.158也认为无效。但是实际上,我们将0.158改为0.5,识别效果更佳。

其它频率的能量P有没有很多接近Px和Py的?参考资料[2]中建议的方法为:首先取近Px和Py中较大的那个,设为Pm,如果其他频率的P值有2个以上达到了Pm的15.8%,那么认为是噪音导致,视为无效。

如果上述三个检验关卡都通过了,那么我们可以将这N个采样评估为包含一个DTMF符号,即Px和Py对应的频率组合对应的某个符号。

参考资料:

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/234697.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年11月1日 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档