def printing_Kfold_scores(x_train_data,y_train_data):
fold = KFold(5,shuffle=False)
print(fold)
#C——正则化强度
c_param_range = [0.01,0.1,1,10,100]
results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = [‘C_parameter’,’Mean recall score’])
results_table[‘C_parameter’] = c_param_range
j = 0
for c_param in c_param_range:
print(‘———————————–‘)
print(‘C parameter: ‘, c_param)
print(‘———————————–‘)
print(”)
recall_accs = []
for iteration, indices in enumerate(fold,start=1):
提示报错:
in printing_Kfold_scores(x_train_data, y_train_data)
16
17 recall_accs = []
—> 18 for iteration, indices in enumerate(fold,start=1):
19
20 #逻辑回归模型TypeError: ‘KFold’ object is not iterable
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/191460.html原文链接:https://javaforall.cn