前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >pandas 处理缺失值[dropna、drop、fillna][通俗易懂]

pandas 处理缺失值[dropna、drop、fillna][通俗易懂]

作者头像
全栈程序员站长
发布2022-11-04 16:31:53
发布2022-11-04 16:31:53
1.8K00
代码可运行
举报
运行总次数:0
代码可运行

大家好,又见面了,我是你们的朋友全栈君。

面对缺失值三种处理方法:

  • option 1: 去掉含有缺失值的样本(行)
  • option 2:将含有缺失值的列(特征向量)去掉
  • option 3:将缺失值用某些值填充(0,平均值,中值等)

对于dropna和fillna,dataframe和series都有,在这主要讲datafame的

对于option1:

使用DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False) 参数说明:

  • axis:
    • axis=0: 删除包含缺失值的行
    • axis=1: 删除包含缺失值的列
  • how: 与axis配合使用
    • how=‘any’ :只要有缺失值出现,就删除该行货列
    • how=‘all’: 所有的值都缺失,才删除行或列
  • thresh: axis中至少有thresh个非缺失值,否则删除 比如 axis=0,thresh=10:标识如果该行中非缺失值的数量小于10,将删除改行
  • subset: list 在哪些列中查看是否有缺失值
  • inplace: 是否在原数据上操作。如果为真,返回None否则返回新的copy,去掉了缺失值

建议在使用时将全部的缺省参数都写上,便于快速理解 examples:

代码语言:javascript
代码运行次数:0
运行
复制
 df = pd.DataFrame( { 
"name": ['Alfred', 'Batman', 'Catwoman'], "toy": [np.nan, 'Batmobile', 'Bullwhip'], "born": [pd.NaT, pd.Timestamp("1940-04-25") pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT # Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 # Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman # Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT # Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT # Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25 # Keep the DataFrame with valid entries in the same variable.  >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 
对于option 2:

可以使用dropna 或者drop函数 DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')

  • labels: 要删除行或列的列表
  • axis: 0 行 ;1 列
代码语言:javascript
代码运行次数:0
运行
复制
 df = pd.DataFrame(np.arange(12).reshape(3,4), columns=['A', 'B', 'C', 'D']) >>>df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 # 删除列 >>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 # 删除行(索引) >>> df.drop([0, 1]) A B C D 2 8 9 10 11 
对于option3

使用DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)

  • value: scalar, dict, Series, or DataFrame dict 可以指定每一行或列用什么值填充
  • method: {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None 在列上操作
    • ffill / pad: 使用前一个值来填充缺失值
    • backfill / bfill :使用后一个值来填充缺失值
  • limit 填充的缺失值个数限制。应该不怎么用
代码语言:javascript
代码运行次数:0
运行
复制
f = pd.DataFrame([[np.nan, 2, np.nan, 0], [3, 4, np.nan, 1], [np.nan, np.nan, np.nan, 5], [np.nan, 3, np.nan, 4]], columns=list('ABCD')) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 NaN 4 # 使用0代替所有的缺失值 >>> df.fillna(0) A B C D 0 0.0 2.0 0.0 0 1 3.0 4.0 0.0 1 2 0.0 0.0 0.0 5 3 0.0 3.0 0.0 4 # 使用后边或前边的值填充缺失值 >>> df.fillna(method='ffill') A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 NaN 4 >>>df.fillna(method='bfill') A B C D 0 3.0 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN 3.0 NaN 5 3 NaN 3.0 NaN 4 # Replace all NaN elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively. # 每一列使用不同的缺失值 >>> values = { 
'A': 0, 'B': 1, 'C': 2, 'D': 3} >>> df.fillna(value=values) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 2.0 4 #只替换第一个缺失值 >>>df.fillna(value=values, limit=1) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 NaN 1 2 NaN 1.0 NaN 5 3 NaN 3.0 NaN 4 

房价分析: 在此问题中,只有bedroom一列有缺失值,按照此三种方法处理代码为:

代码语言:javascript
代码运行次数:0
运行
复制
# option 1 将含有缺失值的行去掉 housing.dropna(subset=["total_bedrooms"]) # option 2 将"total_bedrooms"这一列从数据中去掉 housing.drop("total_bedrooms", axis=1) # option 3 使用"total_bedrooms"的中值填充缺失值 median = housing["total_bedrooms"].median() housing["total_bedrooms"].fillna(median) 
sklearn提供了处理缺失值的 Imputer类,具体的使用教程在这https://blog.csdn.net/dss_dssssd/article/details/82831240

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年9月18日 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 对于option1:
  • 对于option 2:
  • 对于option3
    • sklearn提供了处理缺失值的 Imputer类,具体的使用教程在这https://blog.csdn.net/dss_dssssd/article/details/82831240
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档