前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >ISP举例_low input lag

ISP举例_low input lag

作者头像
全栈程序员站长
发布2022-11-01 12:55:09
5080
发布2022-11-01 12:55:09
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

从2000年9月底摄像头首次出现在手机上算起,到如今成为诸多智能设备不可或缺的一部分,便携式手机摄像头已经走过了18年的发展历程。随着手机智能化、轻薄化的发展进程,其搭载的摄像头也随之发生了变化,但基本结构并未有太大的改变。通常而言,一个摄像头硬件应包含以下五个部分:外壳(Housing)或者镜头固定物(Lens Holder)、镜头(Lens)、红外截止滤波片(IR-cut filter)、图像传感器(Image Sensor)和印制电路板(PCB)。其中,镜头、红外截止滤波片和图像传感器是组成摄像头的核心部件,也是引起Lens Shading的主要部分。

图1 摄像头分解示意图

关于Lens Shading,一直未找到明确且合理的解释。不论是维基百科,还是百度百科,均为对该词条进行解释。但在一些博客和文献中,有人将Lens Shading称为暗角,也有将Lens Shading视为镜头阴影/镜头暗影,此外,还有称Lens Shading为亮度均匀性的。称谓很多,但没有固定且统一的说法。在文中,本人更偏向于镜头暗影的说法,即可用“暗”表示图像亮度变化引起的暗角,也能用“影”表示图像中出现的偏色现象。

图2 Lens Shading解释查询结果

Lens Shading可细分为Luma Shading(亮度均匀性)和Color Shading(色彩均匀性)两种。其中,Luma Shading就是我们常说的暗角。既图像呈现出中心区域较亮,四周偏暗的现象。如图3-(a)所示。Color Shading则表现在图像中心区域与四周颜色不一致。即图像的中心区域或者四周出现偏色。如图3-(b)所示。

图3 Lens Shading示意图

有因才有果,为了能够更好地了解Lens Shading,需要对其进行刨根问底。从上述内容我们知道Lens Shading可细分为两种,为此,本文将对两种Shading的成因进行分开讨论。对于Luma Shading的成因而言,主要分为以下两种:

1.由摄像头本身的机械结构导致产生。由于摄像头各模块在制作和组装的过程中,均存在一定的工艺误差,从而影响物体光线在摄像头内的传播。 2.由镜头(Lens)的光学特性引起。对于整个镜头,可将其视为一个凸透镜。由于凸透镜中心的聚光能力远大于其边缘,从而导致Sensor中心的光线强度大于四周。此种现象也称之为边缘光照度衰减。对于一个没有畸变的摄像头,图像四周的光照度衰减遵循 c o s 4 θ cos^4\theta cos4θ的衰减规律。在考虑镜头构造和畸变的影响时,图像四周的光照度衰减可能不再遵循 c o s 4 θ cos^4\theta cos4θ的衰减规律。 而Color Shading的成因则要相对复杂的多。在分析其成因之前,需要对IR-Cut filter和Image Sensor有所了解。首先,可在摄像头分解示意图中清晰地看到,红外截止滤波片位于镜头和图像传感器之间。主要用于消除投射到Sensor上不必要的光线,防止Sensor产生伪色/波纹,从而提高色彩还原性。由于图像传感器上的RGB像素滤波片不能滤除红外光和紫外光,因此需要使用另外的滤波片进行滤除,否则会导致红绿蓝像素点的亮度值与人眼观察到的亮度值存在较大的差异。就目前而言,红外截止滤波片可分为干涉型、吸收型和混合型三种,其三者的截取范围如图红外截止滤波片截取区域如图4-(a)所示。其中普通的IR-cut filter为干涉型红外截止滤波片,在可见光区域有较高的透过率,存在较低反射率,而在红外区域正好相反,反射率较高,透过率很低。但成角度拍摄照片时,红外光在IR膜上会有较大反射,经过多次反射后,被Sensor接收从而改变图像R通道的值,引起图像偏色问题。蓝玻璃则是吸收型红外截止滤波片,对红外光有很强的吸收作用,不存在很大的反射,能在一定程度上减轻渐晕和色差问题。此外,便是使用前两者混合的方式对想要的光谱区域进行截取,虽然能够缓解入射光角度问题,但使得抵达传感器的光量减少了,从而引入了更多的噪声。如图4-(b)所示。其次,在红外截止滤波片之后便是图像传感器,主要由相间的RGB像素感光块构成。为了使感光面积不受感光片的开口面积影响,一般会在其上方增加一层微透镜(Micro Lens),用于收集光线,提高感光度。但微透镜的主光线角CRA(Chief ray angle)值与镜头的CRA值不匹配便会导致严重的shading问题。

图4 红外滤波片截止区域示意图

结合上述部分的描述和自己的理解,可将Color Shading的成因可分为以下几点:

1.由于镜头对不同光谱光线的折射程度不同,导致入射光线中不同波长的光线落在Sensor的不同位置,从而引起Color Shading。我们都知道光的色散现象,即白光通过三棱镜后会被分解为七色光。而产生这种现象的原因就是三棱镜对不同波长光线的折射不同,从而导致不同波长光线走过的光程不同。 2.由IR-Cut filter引入。具体描述详见上文。 3.由Sensor上微透镜的CRA与镜头的CRA不匹配导致。镜头的主光线角与传感器不匹配,会使传感器的像素出现在光检测区域周围,致使像素曝光不足,亮度不够。 4.在校正Lens Shading时,由于校正参数计算不准确导致。 通常而言,摄像头在拍摄原始图像(raw)之后,会经过图像信号处理器(ISP)处理之后再呈现在用户面前。在整个ISP的pipeline中,会含有一个LSC(Lens Shading Correction)模块,用于校正镜头暗影。其校正前后的图像如图5-(a), 5-(b)所示。

图5 Lens Shading校正前后示意图

在对图5-(b)进行白平衡处理后,便可用Imatest软件对其亮度均匀性和色彩均匀性进行分析,通过Shading的测试原理,确定图像校正的好坏。对于亮度均匀性和色彩均匀性的测试原理如下。

亮度均匀性测试原理:在整幅图像中的四角和中央分别取相同大小的区域,然后算出这些区域的亮度值,以中间区域为基准,用四角区域的亮度值和中间区域的亮度值相比,得到一个比值,这个比值越接近1越好,即Shading值 =(四角最暗处的亮度值Y/中心最亮处的亮度值)×100%。 色彩均匀性测试原理:把整幅图像等分成若干区域,然后算出这些中R/B、R/G或G/B的值,以中间区域为基准,用其他区域的比值和中间区域的比值相比,得到一个接近于1的数值,这些最终得到的比值越接近于1说明Color Shading越好。

个人声明: 以上内容,纯属个人观点,不喜勿喷。若有大佬见此拙作,还望指点一二。有好的建议或者文中存在纰漏,欢迎留言

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/203515.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年10月23日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档