前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【混沌工程】2022 混沌工程状态

【混沌工程】2022 混沌工程状态

作者头像
架构师研究会
发布于 2022-11-01 02:40:25
发布于 2022-11-01 02:40:25
8910
举报
文章被收录于专栏:超级架构师超级架构师

在过去的十二年里,我有机会参与并见证了混沌工程的发展。出身卑微,最常遇到的问题是“你为什么要这样做?”到今天的位置,帮助确保世界顶级公司的可靠性,这是一段相当长的旅程。

我第一次开始实践这门学科,早在它有名字之前几年,在亚马逊,我们的工作就是防止零售网站宕机。当我们取得成功时,Netflix 写了他们关于 Chaos Monkey 的规范博客文章(十年前的今年 7 月)。这个想法成为主流,许多工程师都被迷住了。在亚马逊完成任务后,我急忙加入 Netflix,深入研究这个领域。我们能够进一步推动艺术发展,构建跨越整个 Netflix 生态系统的以开发人员为中心的解决方案,最终带来另外 9 个可用性和世界知名的客户体验。

五年前,我的联合创始人 Matthew Fornaciari 和我创立了 Gremlin,其使命很简单:建立更可靠的互联网。我们都欣喜若狂地看到这次实践已经走了多远。社区中的许多人都渴望获得更多关于如何最好地利用这种方法的数据,因此我们很自豪地展示了第一份混沌工程状态报告。

全球的工程团队使用 Chaos Engineering 故意将危害注入他们的系统、监控影响并修复故障,以免对客户体验产生负面影响。这样做,他们避免了代价高昂的停机,同时减少了 MTTD 和 MTTR,让他们的团队为未知做好准备,并保护客户体验。事实上,Gartner 预计,到 2023 年,将混沌工程实践作为 SRE 计划一部分的 80% 的组织将其平均解决时间 (MTTR) 减少 90%。我们从首份混沌工程状态报告中看到了同样的相似之处:表现最好的混沌工程团队拥有四个 9 的可用性,MTTR 不到一小时。

主要发现

  • 增加可用性和减少 MTTR 是混沌工程最常见的两个好处
  • 经常进行混沌工程实验的团队有 >99.9% 的可用性
  • 23% 的团队的平均解决时间 (MTTR) 不到 1 小时,60% 的团队不到 12 小时
  • 网络攻击是最常运行的实验,与报告的主要故障一致
  • 虽然仍然是一种新兴实践,但大多数受访者 (60%) 至少运行过一次混沌工程攻击
  • 34% 的受访者在生产环境中进行混沌工程实验

Things break

调查显示,前 20% 的受访者拥有超过四个 9 的服务,这是一个令人印象深刻的水平。 23% 的团队的平均解决时间 (MTTR) 不到 1 小时,60% 的团队平均解决时间 (MTTR) 不到 12 小时。

您的服务的平均可用性是多少?

可靠性

占比

<=99%

42.5%

99.5%-99.9%

38.1%

>=99.99%

19.4%

每月平均高严重性事件数 (Sev 0 和 1)

1-10

81.4%

10-20

18.6%

您的平均解决时间 (MTTR) 是多少?

MTTR

占比

<1 hour

23.1%

1 hour - 12 hours

39.8%

12 hours - 1 day

15.5%

1 day - 1 week

15.2%

> 1 week

0.5%

I don't know

5.9%

我们所做的其中一项更有益的事情是每天进行红色与蓝色攻击。 我们让平台团队介入,对我们和我们的服务进行攻击,并将其视为真实的生产事件,通过响应并查看我们所有的运行手册并确保我们被覆盖。

当事情确实发生时,最常见的原因是错误的代码推送和依赖问题。 这些不是相互排斥的。 来自一个团队的错误代码推送可能会导致另一个团队的服务中断。 在团队拥有独立服务的现代系统中,测试所有服务的故障恢复能力非常重要。 运行基于网络的混沌实验,例如延迟和黑洞,确保系统解耦并且可以独立失败,从而最大限度地减少服务中断的影响。

您的事件 (SEV0 和 1) 的百分比是由以下原因引起的:

<20%

21-40%

41-60%

61-80%

>80%

错误的代码部署(例如,部署到生产环境的代码中的错误导致事件)

39%

24%

19%

11.8%

6.1%

内部依赖问题(非 DB)(例如,贵公司运营的服务中断)

41%

25%

20%

10.1%

3.7%

配置错误(例如,云基础设施或容器编排器中的错误设置导致事件)

48%

23%

14%

10.1%

5.2%

网络问题(例如,ISP 或 DNS 中断)

50%

19%

13%

15.7%

1.7%

第 3 方依赖问题(非 DB)(例如,与支付处理器的连接断开)

48%

23%

13%

14.3%

1.7%

托管服务提供商问题(例如,云提供商 AZ 中断)

61%

14%

9%

12.5%

3.9%

机器/基础设施故障(本地)(例如,停电)

64%

14%

6%

12%

4.4%

数据库、消息传递或缓存问题(例如,导致事件的数据库节点丢失)

58%

18%

18%

5.2%

1.2%

未知

66%

10%

15%

7.4%

1%

谁知道

可用性监控因公司而异。例如,Netflix 的流量非常稳定,他们可以使用服务器端每秒的视频启动次数来发现中断。与预测模式的任何偏差都表示中断。 Google 将真实用户监控与窗口结合使用来确定单个中断是否会产生重大影响,或者多个小事件是否会影响服务,从而对事件的原因进行更深入的分析。很少有公司像 Netflix 和 Google 那样拥有一致的流量模式和复杂的统计模型。这就是为什么使用综合监控的标准正常运行时间作为监控服务正常运行时间的最流行方法位于顶部,而许多组织使用多种方法和指标。我们惊喜地发现所有受访者都在监控可用性。这通常是团队为积极改善应用程序中的客户体验而采取的第一步。

您使用什么指标来定义可用性?

可用性指标

占比

错误率(失败请求/总请求)

47.9%

延迟

38.3%

订单/交易与历史预测

21.6%

成功请求/总请求

44%

正常运行时间/总时间段

53.3%

您如何监控可用性?

监控方式

占比

真实用户监控

37.1%

健康检查/合成

64.4%

服务器端响应

50.4%

在查看谁收到有关可用性和性能的报告时,人们越接近操作应用程序,他们收到报告的可能性就越大也就不足为奇了。 我们相信,随着构建和运营的思维方式在组织中变得普遍,DevOps 将运维和开发紧密结合在一起的趋势是使开发人员与运维保持一致。 我们还相信,随着数字化程度的提高和在线用户体验变得更加重要,我们将看到接收可用性和绩效报告的 C 级员工的百分比增加。

谁监控或接收可用性报告?

CEO

15.7%

CFO or VP of Finance

11.8%

CTO

33.7%

VP

30.2%

Managers

51.1%

Ops

61.4%

Developers

54.5%

Other

1.2%

谁监控或接收性能报告?

CEO

12%

CFO or VP of Finance

10.6%

CTO

36.1%

VP

28.3%

Managers

51.8%

Ops

53.8%

Developers

54.1%

Other

2%

最好表现者

表现最好的人有 99.99% 以上的可用性和不到一小时的 MTTR(上面突出显示)。 为了获得这些令人印象深刻的数字,我们调查了团队使用的工具。 值得注意的是,自动缩放、负载平衡器、备份、部署的选择推出以及通过运行状况检查进行监控在顶级可用性组中更为常见。 其中一些,例如多区域,是昂贵的,而其他的,例如断路器和选择推出,是时间和工程专业知识的问题。

始终进行混沌实验的团队比从未进行过实验或临时进行实验的团队具有更高的可用性水平。 但 ad-hoc 实验是实践的重要组成部分,可用性 > 99.9% 的团队正在执行更多的 ad-hoc 实验。

混沌工程实验的频率(按可用性)

Never performed an attack

Performed ad-hoc attacks

Quarterly attacks

Monthly attacks

Weekly attacks

Daily or more frequent attacks

>99.9%

25.7%

28.4%

16.2%

6.8%

17.6%

5.4%

99%-99.9%%

35.7%

25%

11.6%

10.3%

8.5%

8.9%

<99%%

49.4%

18.1%

13.3%

8.4%

8.4%

2.4%

按可用性使用工具

>99.9%

99%-99.9%

<99%

Autoscaling

65%

52%

43%

DNS failover/elastic IPs

49%

33%

24%

Load balancers

77%

64%

71%

Active-active multi-region, AZ or DC

38%

29%

19%

Active-passive multi-region, AZ, or DC

45%

34%

30%

Circuit breakers

32%

22%

16%

Backups

61%

46%

51%

DB replication

51%

47%

37%

Retry logic

41%

33%

31%

Select rollouts of deployments (Blue/Green, Canary, feature flags)

51%

36%

27%

Cached static pages when dynamic unavailable

26%

26%

19%

Monitoring with health checks

70%

58%

53%

混沌工程的演变

2010 年,Netflix 将 Chaos Monkey 引入他们的系统。 这种节点的伪随机故障是对实例和服务器随机故障的响应。 Netflix 希望团队为这些故障模式做好准备,因此他们加快了流程,要求对实例中断具有弹性。 它创建了对可靠性机制的测试,并迫使开发人员在构建时考虑到失败。 基于该项目的成功,Netflix 开源了 Chaos Monkey,并创建了 Chaos Engineer 角色。 从那时起,混沌工程已经发展到遵循科学过程,并且实验已经扩展到主机故障之外,以测试堆栈上下的故障。

谷歌搜索“混沌工程”

年份

搜索次数

2016

1290

2017

6990

2018

19100

2019

24800

2020

31317

对于失败中花费的每一美元,学习一美元的教训 -----“MASTER OF DISASTER” ------JESSE ROBBINS

2020 年,混沌工程成为主流,并成为 Politico 和彭博社的头条新闻。 Gremlin 举办了有史以来规模最大的混沌工程活动,有超过 3,500 名注册者。 Github 拥有超过 200 个混沌工程相关项目,拥有 16K+ 星。 最近,AWS 宣布他们自己的公开混沌工程产品 AWS 故障注入模拟器将于今年晚些时候推出。

Chaos Engineering today

混沌工程正变得越来越流行和改进:60% 的受访者表示他们已经运行过混沌工程攻击。 Chaos Engineering 的创建者 Netflix 和 Amazon 是尖端的大型组织,但我们也看到更成熟的组织和较小的团队采用。 使用混沌工程的团队的多样性也在增长。 最初的工程实践很快被站点可靠性工程 (SRE) 团队采用,现在许多平台、基础设施、运营和应用程序开发团队正在采用这种实践来提高其应用程序的可靠性。 主机故障,我们归类为状态类型攻击,远不如网络和资源攻击流行。 我们已经看到了模拟与依赖项的丢失连接或对服务的需求激增的情况。 我们还看到更多的组织将他们的实验转移到生产中,尽管这还处于早期阶段。

使用 Gremlin 平台的 459,548 次攻击 68% 的客户使用 K8S 攻击

您的组织多久练习一次混沌工程?

每日或更频繁的攻击

每周攻击

每月攻击

每季度攻击

执行临时攻击

从未进行过攻击

>10,000员工

5.7%

8%

4.6%

16.1%

31%

34.5%

5,001-10,000 员工

0%

13.2%

18.4%

21.1%

23.7%

23.7%

1,001-5,000 员工

8.3%

11.1%

8.3%

9.7%

22.2%

40.3%

100-1,000 员工

10.9%

10.9%

8.6%

10.9%

22.7%

35.9%

<100 员工

3.7%

7.3%

9.8%

8.5%

15.9%

54.9%

哪些团队参与了混沌实验?

Application Developers

52%

C-level

10%

Infrastructure

42%

Managers

32%

Operations

49%

Platform or Architecture

37%

SRE

50%

VPs

14%

您的组织中有多少百分比使用混沌工程?

百分比

76%+

7.3%

51-75%

17.7%

26-50%

21%

<25%

54%

你在什么环境下进行过混沌实验?

Dev/Test

63%

Staging

50%

Production

34%

按类型划分的攻击百分比

Network

46%

Resource

38%

State

15%

Application

1%

按目标类型划分的攻击百分比

Host

70%

Container

29%

Application

1%

混沌实验结果

混沌工程最令人兴奋和最有价值的方面之一是发现或验证错误。 这种做法可以更容易地在未知问题影响客户之前发现它们并确定事件的真正原因,从而加快修补过程。 对我们调查的回复中显示的另一个主要好处是更好地理解架构。 运行混沌实验有助于识别对我们的应用程序产生不利影响的紧密耦合或未知依赖关系,并且通常会消除创建微服务应用程序的许多好处。 从我们自己的产品中,我们发现客户经常发现事件、缓解问题并使用 Chaos Engineering 验证修复。 我们的调查受访者经常发现他们的应用程序在减少 MTTR 的同时提高了可用性。

使用混沌工程后,你体验到了什么好处?

提高可用性

47%

缩短平均解决时间 (MTTR)mean time to resolution

45%

缩短平均检测时间 (MTTD)mean time to detection

41%

减少了交付到生产环境的错误数量

38%

减少中断次数

37%

减少页面数

25%

混沌工程的未来

采用/扩展混沌工程的最大障碍是什么?

缺乏认识

20%

其他优先事项

20%

缺乏经验

20%

时间不够

17%

安全问题

12%

害怕出事

11%

采用混沌工程的最大障碍是缺乏意识和经验。紧随其后的是“其他优先事项”,但有趣的是,超过 10% 的人提到担心可能出现问题也是一个禁忌。确实,在实践混沌工程时,我们正在将故障注入系统,但使用遵循科学原理的现代方法,并有条不紊地将实验隔离到单一服务中,我们可以有意识地实践而不破坏客户体验。

我们相信混沌工程的下一阶段涉及向更广泛的受众开放这一重要的测试过程,并使其更容易在更多环境中安全地进行实验。随着实践的成熟和工具的发展,我们希望工程师和操作员能够更容易和更快地设计和运行实验,以提高其系统跨环境的可靠性——今天,30% 的受访者正在生产中运行混沌实验。我们相信,混沌实验将变得更有针对性和自动化,同时也变得更加普遍和频繁。

我们对混沌工程的未来及其在使系统更可靠方面的作用感到兴奋。

人口统计

本报告的数据源包括一项包含 400 多个回复的综合调查和 Gremlin 的产品数据。 调查受访者来自各种规模和行业,主要是软件和服务。 混沌工程的采用已经冲击了企业,近 50% 的受访者为员工人数超过 1,000 人的公司工作,近 20% 的受访者为员工人数超过 10,000 人的公司工作。

该调查强调了云计算的一个转折点,近 60% 的受访者在云中运行大部分工作负载,并使用 CI/CD 管道。 容器Kubernetes 正在达到类似的成熟度,但调查证实服务网格仍处于早期阶段。 最常见的云平台是 AWS,占比接近 40%,GCP、Azure 和本地云平台紧随其后,占比约为 11-12%。

400 多名合格的受访者

贵公司有多少员工?

>10,000

21.4%

5,001-10,000

9.3%

1,001-5,000

17.7%

100-1,000

31.4%

<100

20.1%

你的公司几岁了?

Over 25 years old

25.8%

10 to 25 years old

32.9%

2 to 10 years old

27.3%

Less than 2 years old

14%

贵公司属于哪个行业?

Software & Services

50.2%

Banks, Insurance & Financial Services

23.2%

Energy Equipment & Services

0.7%

Retail & eCommerce

18.3%

Technology Hardware, Semiconductors, & Related Equipment

7.6%

你的职位是什么?

Software Engineer

32.2%

SRE

25.3%

Engineering Manager

18.2%

System Administrator

8.8%

Non-technical Executive (ex: CEO, COO, CMO, CRO)

4.9%

Technical Executive (ex: CTO, CISO, CIO)

10.6%

云中占生产工作负载的百分比是多少?

>75%

35.1%

51-75%

23.1%

25-50%

21.4%

<25%

20.4%

使用 CI/CD 管道部署的生产工作负载的百分比是多少?

>75%

39.8%

51-75%

21.1%

25-50%

20.4%

<25%

18.7%

百分之几的生产工作负载使用容器?

>75%

27.5%

51-75%

19.9%

25-50%

23.6%

<25%

29%

百分之几的生产工作负载使用 Kubernetes(或其他容器编排器)?

>75%

19.4%

51-75%

22.4%

25-50%

18.4%

<25%

39.8%

除了检查调查结果外,我们还汇总了有关 Gremlin 用户技术环境的信息,以了解哪些特定工具和堆栈层最常成为混沌工程实验的目标。 这些发现如下。

您的云提供商是什么?

Amazon Web Services

38%

Google Cloud Platform

12%

Microsoft Azure

12%

Oracle

2%

Private Cloud (On Premises)

11%

你的容器编排器是什么?

Amazon Elastic Container Service

13%

Amazon Elastic Kubernetes Service

19%

Custom Kubernetes

16%

Google Kubernetes Engine

12%

OpenShift

6%

你的监控工具是什么?

Amazon CloudWatch

28%

Datadog

13%

Grafana

18%

New Relic

9%

Prometheus

18%

你的数据库是什么?

Cassandra

5%

DynamoDb

14%

MongoDB

16%

MySQL

22%

Postgres

22%

贡献者

Dynatrace

Dynatrace 提供软件智能以简化云复杂性并加速数字化转型。 借助自动和智能的大规模可观察性,我们的一体化平台可提供有关应用程序性能和安全性、底层基础架构以及所有用户体验的准确答案,使组织能够更快地创新、更有效地协作并交付更多 以更少的努力获得价值。

Epsagon

Epsagon 使团队能够立即可视化、理解和优化他们的微服务架构。 借助我们独特的轻量级自动仪表,消除了与其他 APM 解决方案相关的数据和手动工作方面的空白,从而显着减少了问题检测、根本原因分析和解决时间。

Grafana Labs

Grafana Labs 提供了一个围绕 Grafana 构建的开放且可组合的监控和可观察性平台,Grafana 是用于仪表板和可视化的领先开源技术。 超过 1,000 家客户(如 Bloomberg、JP Morgan Chase、eBay、PayPal 和 Sony)使用 Grafana Labs,全球有超过 600,000 个 Grafana 活跃安装。 商业产品包括 Grafana Cloud,一个集成了 Prometheus 和 Graphite(指标)的托管堆栈,Grafana Enterprise,一个具有企业功能、插件和支持的 Grafana 增强版; Loki(原木)和 Tempo(痕迹)与 Grafana; 和 Grafana Metrics Enterprise,它为大规模运行的大型组织提供 Prometheus 即服务。

LaunchDarkly

LaunchDarkly 由 Edith Harbaugh 和 John Kodumal 于 2014 年创立,是软件团队用来构建更好的软件、更快、风险更低的功能管理平台。 开发团队使用功能管理作为将代码部署与功能发布分开的最佳实践。 使用 LaunchDarkly,团队可以控制从概念到发布再到价值的整个功能生命周期。 每天为超过 1 万亿个功能标志提供服务,LaunchDarkly 被 Atlassian、Microsoft 和 CircleCI 的团队使用。

PagerDuty

PagerDuty, Inc. (NYSE:PD) 是数字运营管理领域的领导者。 在一个永远在线的世界中,各种规模的组织都信任 PagerDuty 可以帮助他们每次都为客户提供完美的数字体验。 团队使用 PagerDuty 实时识别问题和机会,并召集合适的人员更快地解决问题并在未来预防问题。 知名客户包括 GE、思科、基因泰克、艺电、Cox Automotive、Netflix、Shopify、Zoom、DoorDash、Lululemon 等。

本文

https://www.jiagoushi.pro/2021-state-chaos-engineering

讨论:知识星球【首席架构师圈】或者加微信小号【ca_cto】或者加QQ群【792862318】

公众号

【jiagoushipro】【超级架构师】精彩图文详解架构方法论,架构实践,技术原理,技术趋势。我们在等你,赶快扫描关注吧。

微信小号

【ca_cea】50000人社区,讨论:企业架构,云计算,大数据,数据科学,物联网,人工智能,安全,全栈开发,DevOps,数字化.

QQ群

【792862318】深度交流企业架构,业务架构,应用架构,数据架构,技术架构,集成架构,安全架构。以及大数据,云计算,物联网,人工智能等各种新兴技术。加QQ群,有珍贵的报告和干货资料分享。

视频号

【超级架构师】1分钟快速了解架构相关的基本概念,模型,方法,经验。每天1分钟,架构心中熟。

知识星球

【首席架构师圈】向大咖提问,近距离接触,或者获得私密资料分享。

喜马拉雅

【超级架构师】路上或者车上了解最新黑科技资讯,架构心得。

【智能时刻,架构君和你聊黑科技】

知识星球

认识更多朋友,职场和技术闲聊。

知识星球【职场和技术】

微博

【超级架构师】

智能时刻

哔哩哔哩

【超级架构师】

抖音

【cea_cio】超级架构师

快手

【cea_cio_cto】超级架构师

小红书

【cea_csa_cto】超级架构师

网站

CIO(首席信息官)

https://cio.ceo

CIO,CTO和CDO

https://cioctocdo.com

应用开发和开发平台

https://apaas.dev

开发信息网

https://xinxi.dev

首席架构师社区

https://jiagoushi.pro

超级架构师

https://jiagou.dev

企业技术培训

https://peixun.dev

谢谢大家关注,转发,点赞和点在看。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-09-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 首席架构师智库 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
浙大 & 西湖 | 提出Cobra多模态大模型,整合Mamba,计算效率大幅提升!
近年来,多模态大型语言模型(MLLM)在多个领域上取得了成功,但现有MLLM主要是基于Transformer训练得到,计算效率较低。为此,本文作者提出了Cobra,一个具有线性计算复杂度的MLLM,它将Mamba语言模型整合到了视觉模态中。实验结果显示,Cobra在性能上与最先进的方法相当,速度更快,尤其在处理视觉错觉和空间关系判断方面表现突出。Cobra的参数量只有LLaVA的43%,但性能相当。
ShuYini
2024/03/27
8560
浙大 & 西湖 | 提出Cobra多模态大模型,整合Mamba,计算效率大幅提升!
首个基于Mamba的MLLM来了!模型权重、训练代码等已全部开源
近年来,多模态大型语言模型(MLLM)在各个领域的应用取得了显著的成功。然而,作为许多下游任务的基础模型,当前的 MLLM 由众所周知的 Transformer 网络构成,这种网络具有较低效的二次计算复杂度。为了提高这类基础模型的效率,大量的实验表明:(1)Cobra 与当前计算效率高的最先进方法(例如,LLaVA-Phi,TinyLLaVA 和 MobileVLM v2)具有极具竞争力的性能,并且由于 Cobra 的线性序列建模,其速度更快。(2)有趣的是,封闭集挑战性预测基准的结果显示,Cobra 在克服视觉错觉和空间关系判断方面表现良好。(3)值得注意的是,Cobra 甚至在参数数量只有 LLaVA 的 43% 左右的情况下,也取得了与 LLaVA 相当的性能。
机器之心
2024/04/26
3970
首个基于Mamba的MLLM来了!模型权重、训练代码等已全部开源
​新加坡 & 纽约大学 & 字节 提出 PLLaVA | 简单高效视频语言模型适应方法,超越GPT4V,突破资源限制 !
多模态大型语言模型(MLLMs)在训练大规模图像-文本对时已显示出在图像理解方面的卓越能力。与图像领域类似,最近的视频理解模型也探索了类似的流程,在大规模视频-文本数据上对LLMs进行微调。然而,这种方法需要高昂的计算资源和视频数据标注成本。一种更为实用的方法是调整预先训练好的图像领域MLLMs以适应视频数据。
AIGC 先锋科技
2024/07/08
5330
​新加坡 & 纽约大学 & 字节 提出 PLLaVA | 简单高效视频语言模型适应方法,超越GPT4V,突破资源限制 !
NeurIPS 2024|腾讯优图实验室10篇论文入选,含持续学习、大型语言模型、深度伪造检测等研究方向
近期,第38届神经信息处理系统大会(NeurIPS 2024)公布了录取结果。会议共收到了15671篇有效论文投稿,共有超四千篇收录,录取率为25.8%。NeurIPS是CCF推荐的A类国际学术会议,在人工智能及计算机理论领域享有较高学术声誉。NeurIPS 2024将于12月9日至15日在加拿大温哥华举行,届时,众多学术界和工业界的专家将共聚一堂,探讨人工智能的最新进展。
小腾资讯君
2024/10/23
7800
​中科大 & 腾讯微信 & 新加坡国立大学 & 复旦等 将视觉特征与 LLM 的参数空间对齐,LoRA 再升级, 效率更上一层!
大型语言模型(LLM)在大多数自然语言任务上取得了令人鼓舞的性能,并在解决现实世界问题中展现出了强大的泛化能力。从LLM派生出的多模态大型语言模型(MLLM)通过感知现实世界的视觉信息,向人工通用智能(AGI)迈出了一步。因此,感知视觉信息的方式是从LLM向MLLM转变的关键。
AIGC 先锋科技
2024/07/08
3330
​中科大 & 腾讯微信 & 新加坡国立大学 & 复旦等 将视觉特征与 LLM 的参数空间对齐,LoRA 再升级, 效率更上一层!
TransMamba:跨架构训练实现Transformer知识向Mamba迁移,两阶段策略及多方法赋能单多模态任务 !
Transformer [53] 架构对计算机视觉领域产生了深远的影响,它们灵活的注意力模块结构被认为是其成功的关键因素之一。尽管这些架构非常流行,但 Transformer 遇到了计算复杂度问题,因为其注意力机制的计算复杂度呈二次方增长 [2],这导致了计算和内存使用的增加。因此,这给模型优化和扩展带来了重大挑战,阻碍了它们的广泛应用。为应对这一挑战,近期的研究引入了一些亚二次的架构,例如 Mamba 和 RWKV [13, 40]。然而,为了针对各种下游任务从头开始训练专门的亚二次模型,会面临显著的计算负担,并产生更高的二氧化碳排放量。幸运的是,作者观察到许多基于 Transformer 的预训练模型,例如 LLaVA [42] 和 CLIP [42] 等已经公开可用。
AIGC 先锋科技
2025/04/13
3240
TransMamba:跨架构训练实现Transformer知识向Mamba迁移,两阶段策略及多方法赋能单多模态任务 !
北大推出全新机器人多模态大模型!面向通用和机器人场景的高效推理和操作
本文由 HMI Lab 完成。HMI Lab依托北京大学视频与视觉技术国家工程研究中心和多媒体信息处理全国重点实验室两大平台,长期从事机器学习、多模态学习和具身智能方向的研究。本工作第一作者为刘家铭博士,研究方向为面向开放世界的多模态具身大模型与持续性学习技术。本工作第二作者为刘梦真,研究方向为视觉基础模型与机器人操纵。指导老师为仉尚航,北京大学计算机学院研究员、博士生导师、博雅青年学者。从事多模态大模型与具身智能研究,取得了一系列重要研究成果,在人工智能顶级期刊和会议上发表论文 80 余篇,谷歌引用 9700 余次。荣获世界人工智能顶会 AAAI 最佳论文奖,位列世界最大学术源代码仓库 Trending Research 第一位。
机器之心
2024/06/27
3800
北大推出全新机器人多模态大模型!面向通用和机器人场景的高效推理和操作
字节提出 MammothModa | 超越 LLaVA,集成视觉能力的多模态大型语言模型 !
近期,多模态大型语言模型(MLLMs)因其能够理解和生成受视觉输入影响的语言而受到了广泛关注。这些模型融合了视觉和文本数据,使得应用范围涵盖了图像字幕生成、视觉问答和视频分析等众多领域。尽管取得了进展,但许多MLLM在有效结合高分辨率和长时程视觉输入与复杂的语言理解方面,同时保持简洁和高效性方面仍面临挑战。
AIGC 先锋科技
2024/07/11
3140
字节提出 MammothModa | 超越 LLaVA,集成视觉能力的多模态大型语言模型 !
12%计算量就能媲美原模型,Adobe、罗切斯特大学等提出YOPO剪枝技术
本篇论文的核心作者包括罗切斯特大学的博士研究生张泽良,指导教师徐辰良副教授,以及来自Adobe的研究员赵文天,万锟和李宇哲。
机器之心
2025/02/14
810
12%计算量就能媲美原模型,Adobe、罗切斯特大学等提出YOPO剪枝技术
论文解读 - 统一的多模态理解和生成模型综述(上)
近年来,多模态理解模型和图像生成模型都取得了显著的进步。尽管各自取得了成功,这两个领域却独立发展,形成了独特的架构范式:基于自回归的架构主导了多模态理解,而基于扩散的模型则成为图像生成的基石。最近,人们越来越关注开发能够整合这些任务的统一框架。GPT-4的新能力正是这一趋势的体现,突显了统一的可 能性。然而,两个领域的架构差异带来了重大挑战。为了清晰地概述当前的统一努力,论文提供了一份全面的综述,旨在指导未来的研 究。首先,论文介绍多模态理解和文本到图像生成模型的基础概念和最新进展。接下来,论文回顾现有的统一模型,将其分为三大架构 范式:基于扩散、基于自回归以及融合自回归和扩散机制的混合方法。对于每一类,论文分析了相关工作引入的结构设计和创新。此 外,论文还编制了针对统一模型的数据集和基准测试,为未来的探索提供资源。最后,论文讨论了这一新兴领域面临的关键挑战,包括 令牌策略、跨模态注意力和数据问题。由于该领域仍处于早期阶段,论文预计会迅速取得进展,并将定期更新此综述。论文的目标是激 发进一步的研究,并为社区提供有价值的参考。
合合技术团队
2025/05/29
1740
论文解读 - 统一的多模态理解和生成模型综述(上)
斯坦福利用视觉表示法则优化多模态语言模型,计算成本降低 99.7% !
当前的多模态大型语言模型(MLLM)通过将预训练的视觉编码器与强大的语言模型(Touvron等人,2023;Zheng等人,2023)整合,已经取得了显著的进展。作为通用的MLLM的一个核心组成部分,视觉表示至关重要。许多研究行人使用了CLIP 作为主要的图像特征编码器,但其局限性逐渐显现出来。因此,正在积极探讨替代的视觉表示和视觉编码器的组合。
AIGC 先锋科技
2024/09/10
1760
斯坦福利用视觉表示法则优化多模态语言模型,计算成本降低 99.7% !
腾讯优图实验室22篇论文入选,含深度伪造检测、自回归视觉生成、多模态大语言模型等研究方向
近日, CVPR 2025(IEEE/CVF Conferenceon on Computer Vision and Pattern Recognition)论文录用结果揭晓,本次大会共2878篇被录用,录用率为22.1%。CVPR是计算机视觉领域的顶级国际会议,CCF A类会议,每年举办一次。CVPR 2025将于6月11日-15日,在美国田纳西州纳什维尔音乐城市中心召开。
小腾资讯君
2025/04/28
3140
Y-MoD:探索深度混合适应性,适用于多模式大语言模型 !
近年来,自然语言处理(NLP)领域大型语言模型(LLMs)取得了巨大成功,这吸引了越来越多的关注,以将其扩展到视觉语言(VL)任务。尽管取得了进步,但最近的多模态大型语言模型(MLLMs)往往受到其昂贵的计算成本的批评。例如,现有 MLLMs 的推理速度仍远低于实际需求,例如每秒4.7个样本。受NLP进步的推动,最近的技术进步采用了混合专家(MoEs)来减少MLLMs的“激活参数”,从而在效率和性能之间实现了权衡。
AIGC 先锋科技
2024/11/06
1690
Y-MoD:探索深度混合适应性,适用于多模式大语言模型 !
【论文解读】多模态大模型综述
多模态大语言模型(MLLM)是近年来一个新兴的研究热点,它利用强大的大语言模型(LLM)作为大脑进行多模态研究。MLLM令人惊讶的涌现能力,比如基于图像写故事和无ocr的数学推理,在传统方法中是罕见的,这表明了一条通往人工通用智能的潜在道路。本文旨在对MLLM的最新研究进展进行跟踪和总结。首先,论文提出了MLLM的公式,并描述了它的相关概念。然后,论文讨论了关键的技术和应用,包括多模态指令调整(M-IT)、多模态上下文学习(M-ICL)、多模态思维链(M-CoT)和LLM辅助视觉推理(LAVR)。最后,论文讨论了现有的挑战,并指出了很有前景的研究方向。鉴于MLLM的时代才刚刚开始,作者将继续更新这项调查,并希望它能激发更多的研究。
合合技术团队
2024/03/12
6.6K0
【论文解读】多模态大模型综述
高效评估多模态预训练对齐质量,中科大提出模态融合率MIR
本文作者来自于中国科学技术大学,上海人工智能实验室以及香港中文大学。其中第一作者黄启栋为中国科学技术大学三年级博士生,主要研究方向包括多模态大模型(MLLM)和可信 / 高效 AI,师从张卫明教授。
机器之心
2025/02/14
1730
高效评估多模态预训练对齐质量,中科大提出模态融合率MIR
ICLR 2025 | 多模态大模型总&quot;胡说八道&quot;?「定位-修正」实现生成过程的幻觉抑制
论文题目:MLLM Can See? Dynamic Correction Decoding for Hallucination Mitigation
DrugAI
2025/03/28
2400
ICLR 2025 | 多模态大模型总&quot;胡说八道&quot;?「定位-修正」实现生成过程的幻觉抑制
超越CoT!微软剑桥中科院提出MVoT,直接可视化多模态推理过程
在大语言模型(LLMs)和多模态大语言模型(MLLMs)中,思维链(CoT)在复杂推理方面非常有效。
新智元
2025/02/08
1500
超越CoT!微软剑桥中科院提出MVoT,直接可视化多模态推理过程
MMFuser 用于精细视觉-语言理解的多模态多层特征融合器 !
近年来,多模态大型语言模型(MLLMs)在人工智能领域(AGI)的研究热点中崭露头角。这些模型通过跨模态互动和学习在理解和表达复杂人类意图方面取得了重要进展。在大型语言模型(LLMs)快速发展的基础上,MLLMs利用预训练的视觉编码器来提取图像特征,并将其与先进的LLMs相结合,展示了在各种视觉语言任务上的显著能力。
AIGC 先锋科技
2024/12/03
2940
MMFuser 用于精细视觉-语言理解的多模态多层特征融合器 !
每日学术速递2.20
1.Re-Align: Aligning Vision Language Models via Retrieval-Augmented Direct Preference Optimization
AiCharm
2025/02/21
1470
每日学术速递2.20
西湖大学 & 苏大提出 PiTe | 大型视频语言模型的空间与时间维度下的精细对齐研究 !
大型语言模型(LLMs)在AI领域迅速获得了 popularity ,展示了惊人的在各种自然语言任务上的能力。LLMs 强大的语言理解能力促使研究行人探索其在解决更广泛跨领域的任务中的实用性。因此,越来越多的研究专注于开发全面的 Large Visual-Language Models(LVLMs)以解决零样本设置下的视觉相关任务,特别是在视频理解方面。通用 Large Video-Language Models(LVidLMs)的追求将面临长期挑战。在此过程中,实现 LLMs 中固有的杰出理解、推理和生成能力的有效利用至关重要。
AIGC 先锋科技
2024/11/19
2140
西湖大学 & 苏大提出 PiTe  | 大型视频语言模型的空间与时间维度下的精细对齐研究 !
推荐阅读
浙大 & 西湖 | 提出Cobra多模态大模型,整合Mamba,计算效率大幅提升!
8560
首个基于Mamba的MLLM来了!模型权重、训练代码等已全部开源
3970
​新加坡 & 纽约大学 & 字节 提出 PLLaVA | 简单高效视频语言模型适应方法,超越GPT4V,突破资源限制 !
5330
NeurIPS 2024|腾讯优图实验室10篇论文入选,含持续学习、大型语言模型、深度伪造检测等研究方向
7800
​中科大 & 腾讯微信 & 新加坡国立大学 & 复旦等 将视觉特征与 LLM 的参数空间对齐,LoRA 再升级, 效率更上一层!
3330
TransMamba:跨架构训练实现Transformer知识向Mamba迁移,两阶段策略及多方法赋能单多模态任务 !
3240
北大推出全新机器人多模态大模型!面向通用和机器人场景的高效推理和操作
3800
字节提出 MammothModa | 超越 LLaVA,集成视觉能力的多模态大型语言模型 !
3140
12%计算量就能媲美原模型,Adobe、罗切斯特大学等提出YOPO剪枝技术
810
论文解读 - 统一的多模态理解和生成模型综述(上)
1740
斯坦福利用视觉表示法则优化多模态语言模型,计算成本降低 99.7% !
1760
腾讯优图实验室22篇论文入选,含深度伪造检测、自回归视觉生成、多模态大语言模型等研究方向
3140
Y-MoD:探索深度混合适应性,适用于多模式大语言模型 !
1690
【论文解读】多模态大模型综述
6.6K0
高效评估多模态预训练对齐质量,中科大提出模态融合率MIR
1730
ICLR 2025 | 多模态大模型总&quot;胡说八道&quot;?「定位-修正」实现生成过程的幻觉抑制
2400
超越CoT!微软剑桥中科院提出MVoT,直接可视化多模态推理过程
1500
MMFuser 用于精细视觉-语言理解的多模态多层特征融合器 !
2940
每日学术速递2.20
1470
西湖大学 & 苏大提出 PiTe | 大型视频语言模型的空间与时间维度下的精细对齐研究 !
2140
相关推荐
浙大 & 西湖 | 提出Cobra多模态大模型,整合Mamba,计算效率大幅提升!
更多 >
LV.1
这个人很懒,什么都没有留下~
目录
  • 主要发现
  • Things break
  • 谁知道
    • 谁监控或接收性能报告?
  • 最好表现者
    • 混沌工程实验的频率(按可用性)
    • 按可用性使用工具
  • 混沌工程的演变
    • 谷歌搜索“混沌工程”
  • Chaos Engineering today
    • 您的组织多久练习一次混沌工程?
    • 哪些团队参与了混沌实验?
    • 您的组织中有多少百分比使用混沌工程?
    • 你在什么环境下进行过混沌实验?
    • 按类型划分的攻击百分比
    • 按目标类型划分的攻击百分比
  • 混沌实验结果
  • 混沌工程的未来
    • 采用/扩展混沌工程的最大障碍是什么?
  • 人口统计
    • 贵公司有多少员工?
    • 你的公司几岁了?
    • 贵公司属于哪个行业?
    • 你的职位是什么?
    • 云中占生产工作负载的百分比是多少?
    • 使用 CI/CD 管道部署的生产工作负载的百分比是多少?
    • 百分之几的生产工作负载使用容器?
    • 百分之几的生产工作负载使用 Kubernetes(或其他容器编排器)?
    • 您的云提供商是什么?
    • 你的容器编排器是什么?
    • 你的监控工具是什么?
    • 你的数据库是什么?
  • 贡献者
    • Dynatrace
    • Epsagon
    • Grafana Labs
    • LaunchDarkly
    • PagerDuty
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档