前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【干货书】机器学习练习册,Exercises in Machine Learning

【干货书】机器学习练习册,Exercises in Machine Learning

作者头像
数据派THU
发布2022-10-09 10:12:53
2820
发布2022-10-09 10:12:53
举报
文章被收录于专栏:数据派THU
代码语言:javascript
复制
来源:专知本文为书籍介绍,建议阅读5分钟这本书包含了一系列的机器学习练习和详细的解决方案。

这本书包含了一系列的机器学习练习和详细的解决方案。希望本书的细节足以让读者理解解决方案并理解所使用的技术。然而,这些练习并不是机器学习教科书或课程的替代品。我假设读者已经了解了相关的理论和概念,现在想通过解题来加深他们的理解。虽然编码和计算机模拟在机器学习中非常重要,但书中的练习(大部分)可以用笔和纸来解决。对纸笔练习的关注减少了篇幅,简化了演示。此外,它还可以增强读者的数学技能。然而,理想的练习是与计算机练习相结合,以进一步加深理解。这里收集的练习大多是我为赫尔辛基大学的“无监督机器学习”课程和爱丁堡大学的“概率建模和推理”课程开发的练习的结合。这些练习并没有全面涵盖机器学习的所有内容,而是着重于非监督方法、推理和学习。我很感谢我的学生提供反馈和提问。两者都有助于提高练习和解决办法的质量。我还要感谢两所大学为我提供的研究和教学环境。我希望练习的收藏会随着时间的推移而增长。我打算在未来增加新的练习,并欢迎社会各界的贡献。Latex源代码可在https://github.com/michaelgutmann/ml-pen-and-paper-exercises获得。请使用GitHub的问题报告错误或拼写错误,如果您想做出更大的贡献,请与我们联系。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-10-05,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据派THU 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档