防抖(debounce
):触发高频事件 N 秒后只会执行一次,如果 N 秒内事件再次触发,则会重新计时。类似王者荣耀的回城功能,你反复触发回城功能,那么只认最后一次,从最后一次触发开始计时。
核心思想:每次事件触发就清除原来的定时器,建立新的定时器。使用apply或call调用传入的函数。函数内部支持使用 this 和 event 对象;
应用:防抖常应用于用户进行搜索输入节约请求资源,window
触发resize
事件时进行防抖只触发一次。
实现:
function debounce(fn, delay) {
// 利用闭包的原理
let timer = null;
return function(...args){
if(timer) clearTimeout(timer);
timer = setTimeout(() => {
// 改变 this 指向为调用 debounce 所指的对象
fn.call(this, ...args);
// fn.apply(this, args);
}, delay);
}
}
假设要实现一个类似 PPT 自动播放的效果,你很可能会想到使用 JavaScript 定时器控制页面跳转来实现。但其实有更加简洁的实现方法,比如通过 meta 标签来实现:
<meta http-equiv="Refresh" content="5; URL=page2.html">
上面的代码会在 5s 之后自动跳转到同域下的 page2.html 页面。我们要实现 PPT 自动播放的功能,只需要在每个页面的 meta 标签内设置好下一个页面的地址即可。
另一种场景,比如每隔一分钟就需要刷新页面的大屏幕监控,也可以通过 meta 标签来实现,只需去掉后面的 URL 即可:
<meta http-equiv="Refresh" content="60">
meta viewport相关
<!DOCTYPE html> <!--H5标准声明,使用 HTML5 doctype,不区分大小写-->
<head lang=”en”> <!--标准的 lang 属性写法-->
<meta charset=’utf-8′> <!--声明文档使用的字符编码-->
<meta http-equiv=”X-UA-Compatible” content=”IE=edge,chrome=1″/> <!--优先使用 IE 最新版本和 Chrome-->
<meta name=”description” content=”不超过150个字符”/> <!--页面描述-->
<meta name=”keywords” content=””/> <!-- 页面关键词-->
<meta name=”author” content=”name, email@gmail.com”/> <!--网页作者-->
<meta name=”robots” content=”index,follow”/> <!--搜索引擎抓取-->
<meta name=”viewport” content=”initial-scale=1, maximum-scale=3, minimum-scale=1, user-scalable=no”> <!--为移动设备添加 viewport-->
<meta name=”apple-mobile-web-app-title” content=”标题”> <!--iOS 设备 begin-->
<meta name=”apple-mobile-web-app-capable” content=”yes”/> <!--添加到主屏后的标题(iOS 6 新增)
是否启用 WebApp 全屏模式,删除苹果默认的工具栏和菜单栏-->
<meta name=”apple-itunes-app” content=”app-id=myAppStoreID, affiliate-data=myAffiliateData, app-argument=myURL”>
<!--添加智能 App 广告条 Smart App Banner(iOS 6+ Safari)-->
<meta name=”apple-mobile-web-app-status-bar-style” content=”black”/>
<meta name=”format-detection” content=”telphone=no, email=no”/> <!--设置苹果工具栏颜色-->
<meta name=”renderer” content=”webkit”> <!-- 启用360浏览器的极速模式(webkit)-->
<meta http-equiv=”X-UA-Compatible” content=”IE=edge”> <!--避免IE使用兼容模式-->
<meta http-equiv=”Cache-Control” content=”no-siteapp” /> <!--不让百度转码-->
<meta name=”HandheldFriendly” content=”true”> <!--针对手持设备优化,主要是针对一些老的不识别viewport的浏览器,比如黑莓-->
<meta name=”MobileOptimized” content=”320″> <!--微软的老式浏览器-->
<meta name=”screen-orientation” content=”portrait”> <!--uc强制竖屏-->
<meta name=”x5-orientation” content=”portrait”> <!--QQ强制竖屏-->
<meta name=”full-screen” content=”yes”> <!--UC强制全屏-->
<meta name=”x5-fullscreen” content=”true”> <!--QQ强制全屏-->
<meta name=”browsermode” content=”application”> <!--UC应用模式-->
<meta name=”x5-page-mode” content=”app”> <!-- QQ应用模式-->
<meta name=”msapplication-tap-highlight” content=”no”> <!--windows phone 点击无高亮
设置页面不缓存-->
<meta http-equiv=”pragma” content=”no-cache”>
<meta http-equiv=”cache-control” content=”no-cache”>
<meta http-equiv=”expires” content=”0″>
JSON 是一种基于文本的轻量级的数据交换格式。它可以被任何的编程语言读取和作为数据格式来传递。
在项目开发中,使用 JSON 作为前后端数据交换的方式。在前端通过将一个符合 JSON 格式的数据结构序列化为
JSON 字符串,然后将它传递到后端,后端通过 JSON 格式的字符串解析后生成对应的数据结构,以此来实现前后端数据的一个传递。
因为 JSON 的语法是基于 js 的,因此很容易将 JSON 和 js 中的对象弄混,但是应该注意的是 JSON 和 js 中的对象不是一回事,JSON 中对象格式更加严格,比如说在 JSON 中属性值不能为函数,不能出现 NaN 这样的属性值等,因此大多数的 js 对象是不符合 JSON 对象的格式的。
在 js 中提供了两个函数来实现 js 数据结构和 JSON 格式的转换处理,
text-align: center
margin
值为 auto
table
布局,position + transform
/* 方案1 */
.wrap {
text-align: center
}
.center {
display: inline;
/* or */
/* display: inline-block; */
}
/* 方案2 */
.center {
width: 100px;
margin: 0 auto;
}
/* 方案2 */
.wrap {
position: relative;
}
.center {
position: absulote;
left: 50%;
transform: translateX(-50%);
}
先来看两个相关的概念:
块格式化上下文(Block Formatting Context,BFC)是Web页面的可视化CSS渲染的一部分,是布局过程中生成块级盒子的区域,也是浮动元素与其他元素的交互限定区域。
通俗来讲:BFC是一个独立的布局环境,可以理解为一个容器,在这个容器中按照一定规则进行物品摆放,并且不会影响其它环境中的物品。如果一个元素符合触发BFC的条件,则BFC中的元素布局不受外部影响。
创建BFC的条件:
BFC的特点:
BFC的作用:
overflow:hidden
。.left{
width: 100px;
height: 200px;
background: red;
float: left;
}
.right{
height: 300px;
background: blue;
overflow: hidden;
}
<div class="left"></div>
<div class="right"></div>
左侧设置float:left
,右侧设置overflow: hidden
。这样右边就触发了BFC,BFC的区域不会与浮动元素发生重叠,所以两侧就不会发生重叠,实现了自适应两栏布局。
性能优化是前端开发中避不开的问题,
性能问题无外乎两方面原因:渲染速度慢、请求时间长
。性能优化虽然涉及很多复杂的原因和解决方案,但其实只要通过合理地使用标签,就可以在一定程度上提升渲染速度以及减少请求时间
1. script 标签:调整加载顺序提升渲染速度
渲染引擎在解析 HTML 时,若遇到 script 标签引用文件,则会暂停解析过程
,同时通知网络线程加载文件,文件加载后会切换至 JavaScript 引擎来执行对应代码
,代码执行完成之后切换至渲染引擎继续渲染页面
。页面渲染过程中包含了请求文件以及执行文件的时间
,但页面的首次渲染可能并不依赖这些文件,这些请求和执行文件的动作反而延长了用户看到页面的时间,从而降低了用户体验。为了减少这些时间损耗,可以借助 script 标签的 3 个属性来实现。
async 属性
。立即请求文件,但不阻塞渲染引擎,而是文件加载完毕后阻塞渲染引擎并立即执行文件内容
defer 属性
。立即请求文件,但不阻塞渲染引擎,等到解析完 HTML 之后再执行
文件内容绿色的线表示执行解析 HTML ,蓝色的线表示请求文件,红色的线表示执行文件
当渲染引擎解析 HTML 遇到 script 标签引入文件时,会立即进行一次渲染
。所以这也就是为什么构建工具会把编译好的引用 JavaScript 代码的 script 标签放入到 body 标签底部,因为当渲染引擎执行到 body 底部时会先将已解析的内容渲染出来,然后再去请求相应的 JavaScript 文件
2. link 标签:通过预处理提升渲染速度
在我们对大型单页应用进行性能优化时,也许会用到按需懒加载的方式,来加载对应的模块,但如果能合理利用 link
标签的 rel
属性值来进行预加载,就能进一步提升渲染速度。
dns-prefetch
。当 link
标签的 rel
属性值为“dns-prefetch”时,浏览器会对某个域名预先进行 DNS 解析并缓存
。这样,当浏览器在请求同域名资源的时候,能省去从域名查询 IP 的过程,从而减少时间损耗
。下图是淘宝网设置的 DNS 预解析 preconnect
。让浏览器在一个 HTTP 请求正式发给服务器前预先执行一些操作,这包括DNS 解析、TLS 协商、TCP 握手
,通过消除往返延迟来为用户节省时间prefetch/preload
。两个值都是让浏览器预先下载并缓存某个资源
,但不同的是,prefetch 可能会在浏览器忙时被忽略
,而 preload 则是一定会被预先下载
。prerender
。浏览器不仅会加载资源,还会解析执行页面,进行预渲染这几个属性值恰好反映了浏览器获取资源文件的过程,在这里我绘制了一个流程简图,方便你记忆。
3. 搜索优化
<meta name="description" content="全球最大的中文搜索引擎、致力于让网民更便捷地获取信息,找到所求。百度超过千亿的中文网页数据库,可以瞬间找到相关的搜索结果。">
共同点:
不同点:
Vue 的响应式原理是核心是通过 ES5 的保护对象的
Object.defindeProperty
中的访问器属性中的 get 和 set 方法,data 中声明的属性都被添加了访问器属性,当读取 data 中的数据时自动调用 get 方法,当修改 data 中的数据时,自动调用 set 方法,检测到数据的变化,会通知观察者 Wacher,观察者 Wacher自动触发重新render 当前组件(子组件不会重新渲染),生成新的虚拟 DOM 树,Vue 框架会遍历并对比新虚拟 DOM 树和旧虚拟 DOM 树中每个节点的差别,并记录下来,最后,加载操作,将所有记录的不同点,局部修改到真实 DOM树上。
data
中声明的基本数据类型的数据,基本不存在数据不响应问题,所以重点介绍数组和对象在vue
中的数据响应问题,vue可以检测对象属性的修改,但无法监听数组的所有变动及对象的新增和删除,只能使用数组变异方法及$set
方法。可以看到,
arrayMethods
首先继承了Array
,然后对数组中所有能改变数组自身的方法,如push
、pop
等这些方法进行重写。重写后的方法会先执行它们本身原有的逻辑,并对能增加数组长度的 3 个方法push
、unshift
、splice
方法做了判断,获取到插入的值,然后把新添加的值变成一个响应式对象,并且再调用ob.dep.notify()
手动触发依赖通知,这就很好地解释了用vm.items.splice
(newLength
) 方法可以检测到变化总结:Vue 采用数据劫持结合发布—订阅模式的方法,通过
Object.defineProperty()
来劫持各个属性的 setter,getter,在数据变动时发布消息给订阅者,触发相应的监听回调。
Observer
遍历数据对象,给所有属性加上 setter
和 getter
,监听数据的变化compile
解析模板指令,将模板中的变量替换成数据,然后初始化渲染页面视图,并将每个指令对应的节点绑定更新函数,添加监听数据的订阅者,一旦数据有变动,收到通知,更新视图
Watcher
订阅者是Observer
和Compile
之间通信的桥梁,主要做的事情
dep
) 里面添加自己dep.notice()
通知时,调用自身的 update()
方法,并触发 Compile
中绑定的回调Object.defineProperty() ,那么它的用法是什么,以及优缺点是什么呢?
Vue.set()
和Vue.delete()
来实现。// 模拟 Vue 中的 data 选项
let data = {
msg: 'hello'
}
// 模拟 Vue 的实例
let vm = {}
// 数据劫持:当访问或者设置 vm 中的成员的时候,做一些干预操作
Object.defineProperty(vm, 'msg', {
// 可枚举(可遍历)
enumerable: true,
// 可配置(可以使用 delete 删除,可以通过 defineProperty 重新定义)
configurable: true,
// 当获取值的时候执行
get () {
console.log('get: ', data.msg)
return data.msg
},
// 当设置值的时候执行
set (newValue) {
console.log('set: ', newValue)
if (newValue === data.msg) {
return
}
data.msg = newValue
// 数据更改,更新 DOM 的值
document.querySelector('#app').textContent = data.msg
}
})
// 测试
vm.msg = 'Hello World'
console.log(vm.msg)
Vue3.x响应式数据原理
Vue3.x
改用Proxy
替代Object.defineProperty
。因为Proxy
可以直接监听对象和数组
的变化,并且有多达13种拦截方法。并且作为新标准将受到浏览器厂商重点持续的性能优化。
Proxy
只会代理对象的第一层,那么Vue3
又是怎样处理这个问题的呢?
判断当前
Reflect.get的
返回值是否为Object
,如果是则再通过reactive
方法做代理, 这样就实现了深度观测。
监测数组的时候可能触发多次get/set,那么如何防止触发多次呢?
我们可以判断
key
是否为当前被代理对象target
自身属性,也可以判断旧值与新值是否相等,只有满足以上两个条件之一时,才有可能执行trigger
// 模拟 Vue 中的 data 选项
let data = {
msg: 'hello',
count: 0
}
// 模拟 Vue 实例
let vm = new Proxy(data, {
// 当访问 vm 的成员会执行
get (target, key) {
console.log('get, key: ', key, target[key])
return target[key]
},
// 当设置 vm 的成员会执行
set (target, key, newValue) {
console.log('set, key: ', key, newValue)
if (target[key] === newValue) {
return
}
target[key] = newValue
document.querySelector('#app').textContent = target[key]
}
})
// 测试
vm.msg = 'Hello World'
console.log(vm.msg)
Proxy 相比于 defineProperty 的优势
Proxy
是ES6
中新增的功能,可以用来自定义对象中的操作
let p = new Proxy(target, handler);
// `target` 代表需要添加代理的对象
// `handler` 用来自定义对象中的操作
// 可以很方便的使用 Proxy 来实现一个数据绑定和监听
let onWatch = (obj, setBind, getLogger) => {
let handler = {
get(target, property, receiver) {
getLogger(target, property)
return Reflect.get(target, property, receiver);
},
set(target, property, value, receiver) {
setBind(value);
return Reflect.set(target, property, value);
}
};
return new Proxy(obj, handler);
};
let obj = { a: 1 }
let value
let p = onWatch(obj, (v) => {
value = v
}, (target, property) => {
console.log(`Get '${property}' = ${target[property]}`);
})
p.a = 2 // bind `value` to `2`
p.a // -> Get 'a' = 2
总结
$data/$el
data
的成员注入到 Vue
实例Observer
实现数据响应式处理(数据劫持)Compiler
编译指令/插值表达式等Observer
data
中的成员转换成 getter/setter
getter/setter
getter/setter
Dep
和 Watcher
的依赖关系Compiler
Dep
watcher
)Watcher
dep
对象中添加自己dep
通知所有的 Watcher
实例更新视图dom
引用: dom
元素被删除时,内存中的引用未被正确清空console.log
打印的东西可用
chrome
中的timeline
进行内存标记,可视化查看内存的变化情况,找出异常点。
1. 首先得明确 http 缓存的好处
Web
缓存能够减少延迟与网络阻塞,进而减少显示某个资源所用的时间2. 常见 http 缓存的类型
3. 然后谈谈本地缓存
本地缓存是指浏览器请求资源时命中了浏览器本地的缓存资源,浏览器并不会发送真正的请求给服务器了。它的执行过程是
200 OK
,浏览器收到资源后,把资源和对应的响应头一起缓存下来Cache-Control
,它的值是一个相对值,单位为秒,表示资源在客户端缓存的最大有效期,过期时间为第一次请求的时间减去Cache-Control
的值,过期时间跟当前的请求时间比较,如果本地缓存资源没过期,那么命中缓存,不再请求服务器与本地缓存相关的头有:
Cache-Control
、Expires
,Cache-Control
有多个可选值代表不同的意义,而Expires
就是一个日期格式的绝对值。
3.1 Cache-Control
Cache-Control
是HTPP
缓存策略中最重要的头,它是HTTP/1.1
中出现的,它由如下几个值
no-cache
:不使用本地缓存。需要使用缓存协商,先与服务器确认返回的响应是否被更改,如果之前的响应中存在ETag
,那么请求的时候会与服务端验证,如果资源未被更改,则可以避免重新下载no-store
:直接禁止游览器缓存数据,每次用户请求该资源,都会向服务器发送一个请求,每次都会下载完整的资源public
:可以被所有的用户缓存,包括终端用户和CDN
等中间代理服务器。private
:只能被终端用户的浏览器缓存,不允许CDN
等中继缓存服务器对其缓存。max-age
:从当前请求开始,允许获取的响应被重用的最长时间(秒)。must-revalidate
,当缓存过期时,需要去服务端校验缓存的有效性。Cache-Control: public, max-age=1000
注意,虽然你可能在其他资料中看到可以使用 meta 标签来设置缓存,比如像下面的形式:
<meta http-equiv="expires" content="Wed, 20 Jun 2021 22:33:00 GMT"
但在 HTML5 规范中,并不支持这种方式,所以尽量不要使用 meta 标签来设置缓存
。
3.2 Expires
Expires
是HTTP/1.0
出现的头信息,同样是用于决定本地缓存策略的头,它是一个绝对时间,时间格式是如Mon, 10 Jun 2015 21:31:12 GMT
,只要发送请求时间是在Expires
之前,那么本地缓存始终有效,否则就会去服务器发送请求获取新的资源。如果同时出现Cache-Control:max-age
和Expires
,那么max-age
优先级更高。他们可以这样组合使用
Cache-Control: public
Expires: Wed, Jan 10 2018 00:27:04 GMT
3.3 所谓的缓存协商
当第一次请求时服务器返回的响应头中存在以下情况时
Cache-Control
和 Expires
Cache-Control
和 Expires
过期了Cache-Control
的属性设置为 no-cache
时那么浏览器第二次请求时就会与服务器进行协商,询问浏览器中的缓存资源是不是旧版本,需不需要更新,此时,服务器就会做出判断,如果缓存和服务端资源的最新版本是一致的,那么就无需再次下载该资源,服务端直接返回
304 Not Modified
状态码,如果服务器发现浏览器中的缓存已经是旧版本了,那么服务器就会把最新资源的完整内容返回给浏览器,状态码就是200 Ok
,那么服务端是根据什么来判断浏览器的缓存是不是最新的呢?其实是根据HTTP
的另外两组头信息,分别是:Last-Modified/If-Modified-Since
与ETag/If-None-Match
。
Last-Modified 与 If-Modified-Since
具体工作流程如下:
Last-Modified:Thu, 29 Dec 2011 18:23:55 GMT
放在响应头中返回给浏览器If-Modified-Since:Thu, 29 Dec 2011 18:23:55
发送给服务器,服务器就会拿这个时间跟服务器上的资源的最新修改时间进行对比If-Modified-Since
的值,判断相关资源是否有变化,如果没有,则返回 304 Not Modified
,并且不返回资源内容,浏览器使用资源缓存值;否则正常返回资源内容,且更新Last-Modified
响应头内容。如果两者相等或者大于服务器上的最新修改时间,那么表示浏览器的缓存是有效的,此时缓存会命中,服务器就不再返回内容给浏览器了,同时
Last-Modified
头也不会返回,因为资源没被修改,返回了也没什么意义。如果没命中缓存则最新修改的资源连同Last-Modified
头一起返回
这种方式虽然能判断缓存是否失效,但也存在两个问题:
Last-Modified
的时间精度为秒,如果在 1
秒内发生修改,那么缓存判断可能会失效;Expires: Fri, Jan 12 2018 00:27:04 GMT
Last-Modified: Wed, Jan 10 2018 00:27:04 GMT
这组头信息是基于资源的修改时间来判断资源有没有更新,另一种方式就是根据资源的内容来判断,就是接下来要讨论的
ETag
与If-None-Match
ETag与If-None-Match
为了解决精度问题和准度问题
,HTTP 提供了另一种不依赖于修改时间,而依赖于文件哈希值的精确判断缓存的方式,那就是响应头部字段 ETag 和请求头部字段 If-None-Match。
ETag/If-None-Match
与Last-Modified/If-Modified-Since
的流程其实是类似的,唯一的区别是它基于资源的内容的摘要信息(比如MD5 hash
)来判断浏览器发送第二次请求时,会把第一次的响应头信息
ETag
的值放在If-None-Match
的请求头中发送到服务器,与最新的资源的摘要信息对比,如果相等,取浏览器缓存,否则内容有更新,最新的资源连同最新的摘要信息返回。用ETag
的好处是如果因为某种原因到时资源的修改时间没改变,那么用ETag
就能区分资源是不是有被更新。
具体工作流程如下:
Etag
字段,Etag
字段值为该资源的哈希值If-None-Match
,值为之前响应头部字段 ETag
的值;If-None-Match
字段的值和响应资源的哈希值进行比对,如果两个值相同,则说明资源没有变化,返回 304 Not Modified
;否则就正常返回资源内容,无论是否发生变化,都会将计算出的哈希值放入响应头部的 ETag
字段中这种缓存比较的方式也会存在一些问题,具体表现在以下两个方面。
需要注意的是,
强制缓存的优先级高于协商缓存
,在协商缓存中,Etag 优先级比 Last-Modified
高
Cache-Control: public, max-age=31536000
ETag: "15f0fff99ed5aae4edffdd6496d7131f"
If-None-Match: "15f0fff99ed5aae4edffdd6496d7131f"
缓存位置
浏览器缓存的位置的话,可以分为四种,优先级从高到低排列分别👇
Service Worker
Memory Cache
Disk Cache
Push Cache
Service Worker
这个应用场景比如PWA,它借鉴了Web Worker思路,由于它脱离了浏览器的窗体,因此无法直接访问DOM。它能完成的功能比如:
离线缓存
、消息推送
和网络代理
,其中离线缓存
就是 Service Worker Cache 。
Memory Cache
指的是内存缓存,从效率上讲它是最快的,从存活时间来讲又是最短的,当渲染进程结束后,内存缓存也就不存在了。
Disk Cache
存储在磁盘中的缓存,从存取效率上讲是比内存缓存慢的,优势在于存储容量和存储时长。
Disk Cache VS Memory Cache
两者对比,主要的策略👇
Push Cache
推送缓存,这算是浏览器中最后一道防线吧,它是
HTTP/2
的内容
浏览器缓存总结
浏览器缓存分为强缓存和协商缓存。当客户端请求某个资源时,获取缓存的流程如下
Cache-Control
,如果命中,则直接从本地获取缓存资源,不会发请求到服务器;If-Modified-Since
或者If-None-Match
字段检查资源是否更新)强缓存
协商缓
TLS/SSL全称安全传输层协议(Transport Layer Security), 是介于TCP和HTTP之间的一层安全协议,不影响原有的TCP协议和HTTP协议,所以使用HTTPS基本上不需要对HTTP页面进行太多的改造。
TLS/SSL的功能实现主要依赖三类基本算法:散列函数hash、对称加密、非对称加密。这三类算法的作用如下:
常见的散列函数有MD5、SHA1、SHA256。该函数的特点是单向不可逆,对输入数据非常敏感,输出的长度固定,任何数据的修改都会改变散列函数的结果,可以用于防止信息篡改并验证数据的完整性。
特点: 在信息传输过程中,散列函数不能三都实现信息防篡改,由于传输是明文传输,中间人可以修改信息后重新计算信息的摘要,所以需要对传输的信息和信息摘要进行加密。
对称加密的方法是,双方使用同一个秘钥对数据进行加密和解密。但是对称加密的存在一个问题,就是如何保证秘钥传输的安全性,因为秘钥还是会通过网络传输的,一旦秘钥被其他人获取到,那么整个加密过程就毫无作用了。 这就要用到非对称加密的方法。
常见的对称加密算法有AES-CBC、DES、3DES、AES-GCM等。相同的秘钥可以用于信息的加密和解密。掌握秘钥才能获取信息,防止信息窃听,其通讯方式是一对一。
特点: 对称加密的优势就是信息传输使用一对一,需要共享相同的密码,密码的安全是保证信息安全的基础,服务器和N个客户端通信,需要维持N个密码记录且不能修改密码。
非对称加密的方法是,我们拥有两个秘钥,一个是公钥,一个是私钥。公钥是公开的,私钥是保密的。用私钥加密的数据,只有对应的公钥才能解密,用公钥加密的数据,只有对应的私钥才能解密。我们可以将公钥公布出去,任何想和我们通信的客户, 都可以使用我们提供的公钥对数据进行加密,这样我们就可以使用私钥进行解密,这样就能保证数据的安全了。但是非对称加密有一个缺点就是加密的过程很慢,因此如果每次通信都使用非对称加密的方式的话,反而会造成等待时间过长的问题。
常见的非对称加密算法有RSA、ECC、DH等。秘钥成对出现,一般称为公钥(公开)和私钥(保密)。公钥加密的信息只有私钥可以解开,私钥加密的信息只能公钥解开,因此掌握公钥的不同客户端之间不能相互解密信息,只能和服务器进行加密通信,服务器可以实现一对多的的通信,客户端也可以用来验证掌握私钥的服务器的身份。
特点: 非对称加密的特点就是信息一对多,服务器只需要维持一个私钥就可以和多个客户端进行通信,但服务器发出的信息能够被所有的客户端解密,且该算法的计算复杂,加密的速度慢。
综合上述算法特点,TLS/SSL的工作方式就是客户端使用非对称加密与服务器进行通信,实现身份的验证并协商对称加密使用的秘钥。对称加密算法采用协商秘钥对信息以及信息摘要进行加密通信,不同节点之间采用的对称秘钥不同,从而保证信息只能通信双方获取。这样就解决了两个方法各自存在的问题。
下面是MDN对于CORS的定义:
跨域资源共享(CORS) 是一种机制,它使用额外的 HTTP 头来告诉浏览器 让运行在一个 origin (domain)上的Web应用被准许访问来自不同源服务器上的指定的资源。当一个资源从与该资源本身所在的服务器不同的域、协议或端口请求一个资源时,资源会发起一个跨域HTTP 请求。
CORS需要浏览器和服务器同时支持,整个CORS过程都是浏览器完成的,无需用户参与。因此实现CORS的关键就是服务器,只要服务器实现了CORS请求,就可以跨源通信了。
浏览器将CORS分为简单请求和非简单请求:
简单请求不会触发CORS预检请求。若该请求满足以下两个条件,就可以看作是简单请求:
1)请求方法是以下三种方法之一:
2)HTTP的头信息不超出以下几种字段:
若不满足以上条件,就属于非简单请求了。
(1)简单请求过程:
对于简单请求,浏览器会直接发出CORS请求,它会在请求的头信息中增加一个Orign字段,该字段用来说明本次请求来自哪个源(协议+端口+域名),服务器会根据这个值来决定是否同意这次请求。如果Orign指定的域名在许可范围之内,服务器返回的响应就会多出以下信息头:
Access-Control-Allow-Origin: http://api.bob.com // 和Orign一直
Access-Control-Allow-Credentials: true // 表示是否允许发送Cookie
Access-Control-Expose-Headers: FooBar // 指定返回其他字段的值
Content-Type: text/html; charset=utf-8 // 表示文档类型
如果Orign指定的域名不在许可范围之内,服务器会返回一个正常的HTTP回应,浏览器发现没有上面的Access-Control-Allow-Origin头部信息,就知道出错了。这个错误无法通过状态码识别,因为返回的状态码可能是200。
在简单请求中,在服务器内,至少需要设置字段:Access-Control-Allow-Origin
(2)非简单请求过程
非简单请求是对服务器有特殊要求的请求,比如请求方法为DELETE或者PUT等。非简单请求的CORS请求会在正式通信之前进行一次HTTP查询请求,称为预检请求。
浏览器会询问服务器,当前所在的网页是否在服务器允许访问的范围内,以及可以使用哪些HTTP请求方式和头信息字段,只有得到肯定的回复,才会进行正式的HTTP请求,否则就会报错。
预检请求使用的请求方法是OPTIONS,表示这个请求是来询问的。他的头信息中的关键字段是Orign,表示请求来自哪个源。除此之外,头信息中还包括两个字段:
服务器在收到浏览器的预检请求之后,会根据头信息的三个字段来进行判断,如果返回的头信息在中有Access-Control-Allow-Origin这个字段就是允许跨域请求,如果没有,就是不同意这个预检请求,就会报错。
服务器回应的CORS的字段如下:
Access-Control-Allow-Origin: http://api.bob.com // 允许跨域的源地址
Access-Control-Allow-Methods: GET, POST, PUT // 服务器支持的所有跨域请求的方法
Access-Control-Allow-Headers: X-Custom-Header // 服务器支持的所有头信息字段
Access-Control-Allow-Credentials: true // 表示是否允许发送Cookie
Access-Control-Max-Age: 1728000 // 用来指定本次预检请求的有效期,单位为秒
只要服务器通过了预检请求,在以后每次的CORS请求都会自带一个Origin头信息字段。服务器的回应,也都会有一个Access-Control-Allow-Origin头信息字段。
在非简单请求中,至少需要设置以下字段:
'Access-Control-Allow-Origin'
'Access-Control-Allow-Methods'
'Access-Control-Allow-Headers'
OPTIONS请求次数过多就会损耗页面加载的性能,降低用户体验度。所以尽量要减少OPTIONS请求次数,可以后端在请求的返回头部添加:Access-Control-Max-Age:number。它表示预检请求的返回结果可以被缓存多久,单位是秒。该字段只对完全一样的URL的缓存设置生效,所以设置了缓存时间,在这个时间范围内,再次发送请求就不需要进行预检请求了。
在CORS请求中,如果想要传递Cookie,就要满足以下三个条件:
withCredentials
默认情况下在跨域请求,浏览器是不带 cookie 的。但是我们可以通过设置 withCredentials 来进行传递 cookie.
// 原生 xml 的设置方式
var xhr = new XMLHttpRequest();
xhr.withCredentials = true;
// axios 设置方式
axios.defaults.withCredentials = true;
*
jsonp的原理就是利用<script>
标签没有跨域限制,通过<script>
标签src属性,发送带有callback参数的GET请求,服务端将接口返回数据拼凑到callback函数中,返回给浏览器,浏览器解析执行,从而前端拿到callback函数返回的数据。
1)原生JS实现:
<script>
var script = document.createElement('script');
script.type = 'text/javascript';
// 传参一个回调函数名给后端,方便后端返回时执行这个在前端定义的回调函数
script.src = 'http://www.domain2.com:8080/login?user=admin&callback=handleCallback';
document.head.appendChild(script);
// 回调执行函数
function handleCallback(res) {
alert(JSON.stringify(res));
}
</script>
服务端返回如下(返回时即执行全局函数):
handleCallback({"success": true, "user": "admin"})
2)Vue axios实现:
this.$http = axios;
this.$http.jsonp('http://www.domain2.com:8080/login', {
params: {},
jsonp: 'handleCallback'
}).then((res) => {
console.log(res);
})
后端node.js代码:
var querystring = require('querystring');
var http = require('http');
var server = http.createServer();
server.on('request', function(req, res) {
var params = querystring.parse(req.url.split('?')[1]);
var fn = params.callback;
// jsonp返回设置
res.writeHead(200, { 'Content-Type': 'text/javascript' });
res.write(fn + '(' + JSON.stringify(params) + ')');
res.end();
});
server.listen('8080');
console.log('Server is running at port 8080...');
JSONP的缺点:
postMessage是HTML5 XMLHttpRequest Level 2中的API,且是为数不多可以跨域操作的window属性之一,它可用于解决以下方面的问题:
用法:postMessage(data,origin)方法接受两个参数:
1)a.html:(domain1.com/a.html)
<iframe id="iframe" src="http://www.domain2.com/b.html" style="display:none;"></iframe>
<script> var iframe = document.getElementById('iframe'); iframe.onload = function() { var data = { name: 'aym'
}; // 向domain2传送跨域数据
iframe.contentWindow.postMessage(JSON.stringify(data), 'http://www.domain2.com'); }; // 接受domain2返回数据
window.addEventListener('message', function(e) { alert('data from domain2 ---> ' + e.data); }, false);
</script>
2)b.html:(domain2.com/b.html)
<script>
// 接收domain1的数据
window.addEventListener('message', function(e) {
alert('data from domain1 ---> ' + e.data);
var data = JSON.parse(e.data);
if (data) {
data.number = 16;
// 处理后再发回domain1
window.parent.postMessage(JSON.stringify(data), 'http://www.domain1.com');
}
}, false);
</script>
nginx代理跨域,实质和CORS跨域原理一样,通过配置文件设置请求响应头Access-Control-Allow-Origin…等字段。
1)nginx配置解决iconfont跨域
浏览器跨域访问js、css、img等常规静态资源被同源策略许可,但iconfont字体文件(eot|otf|ttf|woff|svg)例外,此时可在nginx的静态资源服务器中加入以下配置。
location / {
add_header Access-Control-Allow-Origin *;
}
2)nginx反向代理接口跨域
跨域问题:同源策略仅是针对浏览器的安全策略。服务器端调用HTTP接口只是使用HTTP协议,不需要同源策略,也就不存在跨域问题。
实现思路:通过Nginx配置一个代理服务器域名与domain1相同,端口不同)做跳板机,反向代理访问domain2接口,并且可以顺便修改cookie中domain信息,方便当前域cookie写入,实现跨域访问。
nginx具体配置:
#proxy服务器
server {
listen 81;
server_name www.domain1.com;
location / {
proxy_pass http://www.domain2.com:8080; #反向代理
proxy_cookie_domain www.domain2.com www.domain1.com; #修改cookie里域名
index index.html index.htm;
# 当用webpack-dev-server等中间件代理接口访问nignx时,此时无浏览器参与,故没有同源限制,下面的跨域配置可不启用
add_header Access-Control-Allow-Origin http://www.domain1.com; #当前端只跨域不带cookie时,可为*
add_header Access-Control-Allow-Credentials true;
}
}
node中间件实现跨域代理,原理大致与nginx相同,都是通过启一个代理服务器,实现数据的转发,也可以通过设置cookieDomainRewrite参数修改响应头中cookie中域名,实现当前域的cookie写入,方便接口登录认证。
1)非vue框架的跨域 使用node + express + http-proxy-middleware搭建一个proxy服务器。
var xhr = new XMLHttpRequest();
// 前端开关:浏览器是否读写cookie
xhr.withCredentials = true;
// 访问http-proxy-middleware代理服务器
xhr.open('get', 'http://www.domain1.com:3000/login?user=admin', true);
xhr.send();
var express = require('express');
var proxy = require('http-proxy-middleware');
var app = express();
app.use('/', proxy({
// 代理跨域目标接口
target: 'http://www.domain2.com:8080',
changeOrigin: true,
// 修改响应头信息,实现跨域并允许带cookie
onProxyRes: function(proxyRes, req, res) {
res.header('Access-Control-Allow-Origin', 'http://www.domain1.com');
res.header('Access-Control-Allow-Credentials', 'true');
},
// 修改响应信息中的cookie域名
cookieDomainRewrite: 'www.domain1.com' // 可以为false,表示不修改
}));
app.listen(3000);
console.log('Proxy server is listen at port 3000...');
2)vue框架的跨域
node + vue + webpack + webpack-dev-server搭建的项目,跨域请求接口,直接修改webpack.config.js配置。开发环境下,vue渲染服务和接口代理服务都是webpack-dev-server同一个,所以页面与代理接口之间不再跨域。
webpack.config.js部分配置:
module.exports = {
entry: {},
module: {},
...
devServer: {
historyApiFallback: true,
proxy: [{
context: '/login',
target: 'http://www.domain2.com:8080', // 代理跨域目标接口
changeOrigin: true,
secure: false, // 当代理某些https服务报错时用
cookieDomainRewrite: 'www.domain1.com' // 可以为false,表示不修改
}],
noInfo: true
}
}
此方案仅限主域相同,子域不同的跨域应用场景。实现原理:两个页面都通过js强制设置document.domain为基础主域,就实现了同域。
1)父窗口:(domain.com/a.html)
<iframe id="iframe" src="http://child.domain.com/b.html"></iframe>
<script>
document.domain = 'domain.com'; var user = 'admin';
</script>
1)子窗口:(child.domain.com/a.html)
<script>
document.domain = 'domain.com';
// 获取父窗口中变量
console.log('get js data from parent ---> ' + window.parent.user);
</script>
实现原理:a欲与b跨域相互通信,通过中间页c来实现。 三个页面,不同域之间利用iframe的location.hash传值,相同域之间直接js访问来通信。
具体实现:A域:a.html -> B域:b.html -> A域:c.html,a与b不同域只能通过hash值单向通信,b与c也不同域也只能单向通信,但c与a同域,所以c可通过parent.parent访问a页面所有对象。
1)a.html:(domain1.com/a.html)
<iframe id="iframe" src="http://www.domain2.com/b.html" style="display:none;"></iframe>
<script>
var iframe = document.getElementById('iframe'); // 向b.html传hash值
setTimeout(function() { iframe.src = iframe.src + '#user=admin'; }, 1000); // 开放给同域c.html的回调方法
function onCallback(res) { alert('data from c.html ---> ' + res); }
</script>
2)b.html:(.domain2.com/b.html)
<iframe id="iframe" src="http://www.domain1.com/c.html" style="display:none;"></iframe>
<script>
var iframe = document.getElementById('iframe');
// 监听a.html传来的hash值,再传给c.html
window.onhashchange = function () {
iframe.src = iframe.src + location.hash;
};
</script>
<script>
// 监听b.html传来的hash值
window.onhashchange = function () {
// 再通过操作同域a.html的js回调,将结果传回
window.parent.parent.onCallback('hello: ' + location.hash.replace('#user=', ''));
};
</script>
window.name属性的独特之处:name值在不同的页面(甚至不同域名)加载后依旧存在,并且可以支持非常长的 name 值(2MB)。
1)a.html:(domain1.com/a.html)
var proxy = function(url, callback) {
var state = 0;
var iframe = document.createElement('iframe');
// 加载跨域页面
iframe.src = url;
// onload事件会触发2次,第1次加载跨域页,并留存数据于window.name
iframe.onload = function() {
if (state === 1) {
// 第2次onload(同域proxy页)成功后,读取同域window.name中数据
callback(iframe.contentWindow.name);
destoryFrame();
} else if (state === 0) {
// 第1次onload(跨域页)成功后,切换到同域代理页面
iframe.contentWindow.location = 'http://www.domain1.com/proxy.html';
state = 1;
}
};
document.body.appendChild(iframe);
// 获取数据以后销毁这个iframe,释放内存;这也保证了安全(不被其他域frame js访问)
function destoryFrame() {
iframe.contentWindow.document.write('');
iframe.contentWindow.close();
document.body.removeChild(iframe);
}
};
// 请求跨域b页面数据
proxy('http://www.domain2.com/b.html', function(data){
alert(data);
});
2)proxy.html:(domain1.com/proxy.html)
中间代理页,与a.html同域,内容为空即可。
3)b.html:(domain2.com/b.html)
<script>
window.name = 'This is domain2 data!';
</script>
通过iframe的src属性由外域转向本地域,跨域数据即由iframe的window.name从外域传递到本地域。这个就巧妙地绕过了浏览器的跨域访问限制,但同时它又是安全操作。
WebSocket protocol是HTML5一种新的协议。它实现了浏览器与服务器全双工通信,同时允许跨域通讯,是server push技术的一种很好的实现。
原生WebSocket API使用起来不太方便,我们使用Socket.io,它很好地封装了webSocket接口,提供了更简单、灵活的接口,也对不支持webSocket的浏览器提供了向下兼容。
1)前端代码:
<div>user input:<input type="text"></div>
<script src="https://cdn.bootcss.com/socket.io/2.2.0/socket.io.js"></script>
<script>
var socket = io('http://www.domain2.com:8080');
// 连接成功处理
socket.on('connect', function() { // 监听服务端消息
socket.on('message', function(msg) { console.log('data from server: ---> ' + msg); }); // 监听服务端关闭
socket.on('disconnect', function() { console.log('Server socket has closed.'); });});
document.getElementsByTagName('input')[0].onblur = function() { socket.send(this.value);};
</script>
2)Nodejs socket后台:
var http = require('http');
var socket = require('socket.io');
// 启http服务
var server = http.createServer(function(req, res) {
res.writeHead(200, {
'Content-type': 'text/html'
});
res.end();
});
server.listen('8080');
console.log('Server is running at port 8080...');
// 监听socket连接
socket.listen(server).on('connection', function(client) {
// 接收信息
client.on('message', function(msg) {
client.send('hello:' + msg);
console.log('data from client: ---> ' + msg);
});
// 断开处理
client.on('disconnect', function() {
console.log('Client socket has closed.');
});
});
async function async1 () {
await async2();
console.log('async1');
return 'async1 success'
}
async function async2 () {
return new Promise((resolve, reject) => {
console.log('async2')
reject('error')
})
}
async1().then(res => console.log(res))
输出结果如下:
async2
Uncaught (in promise) error
可以看到,如果async函数中抛出了错误,就会终止错误结果,不会继续向下执行。
如果想要让错误不足之处后面的代码执行,可以使用catch来捕获:
async function async1 () {
await Promise.reject('error!!!').catch(e => console.log(e))
console.log('async1');
return Promise.resolve('async1 success')
}
async1().then(res => console.log(res))
console.log('script start')
这样的输出结果就是:
script start
error!!!
async1
async1 success
解构是 ES6 提供的一种新的提取数据的模式,这种模式能够从对象或数组里有针对性地拿到想要的数值。 1)数组的解构 在解构数组时,以元素的位置为匹配条件来提取想要的数据的:
const [a, b, c] = [1, 2, 3]
最终,a、b、c分别被赋予了数组第0、1、2个索引位的值:
数组里的0、1、2索引位的元素值,精准地被映射到了左侧的第0、1、2个变量里去,这就是数组解构的工作模式。还可以通过给左侧变量数组设置空占位的方式,实现对数组中某几个元素的精准提取:
const [a,,c] = [1,2,3]
通过把中间位留空,可以顺利地把数组第一位和最后一位的值赋给 a、c 两个变量:
2)对象的解构 对象解构比数组结构稍微复杂一些,也更显强大。在解构对象时,是以属性的名称为匹配条件,来提取想要的数据的。现在定义一个对象:
const stu = {
name: 'Bob',
age: 24
}
假如想要解构它的两个自有属性,可以这样:
const { name, age } = stu
这样就得到了 name 和 age 两个和 stu 平级的变量:
注意,对象解构严格以属性名作为定位依据,所以就算调换了 name 和 age 的位置,结果也是一样的:
const { age, name } = stu
1. XSS
涉及面试题:什么是
XSS
攻击?如何防范XSS
攻击?什么是CSP
?
XSS
简单点来说,就是攻击者想尽一切办法将可以执行的代码注入到网页中。XSS
可以分为多种类型,但是总体上我认为分为两类:持久型和非持久型。举个例子,对于评论功能来说,就得防范持久型
XSS
攻击,因为我可以在评论中输入以下内容
URL
参数的方式加入攻击代码,诱导用户访问链接从而进行攻击。举个例子,如果页面需要从
URL
中获取某些参数作为内容的话,不经过过滤就会导致攻击代码被执行
<!-- http://www.domain.com?name=<script>alert(1)</script> -->
<div>{{name}}</div>
但是对于这种攻击方式来说,如果用户使用
Chrome
这类浏览器的话,浏览器就能自动帮助用户防御攻击。但是我们不能因此就不防御此类攻击了,因为我不能确保用户都使用了该类浏览器。
对于
XSS
攻击来说,通常有两种方式可以用来防御。
首先,对于用户的输入应该是永远不信任的。最普遍的做法就是转义输入输出的内容,对于引号、尖括号、斜杠进行转义
function escape(str) {
str = str.replace(/&/g, '&')
str = str.replace(/</g, '<')
str = str.replace(/>/g, '>')
str = str.replace(/"/g, '&quto;')
str = str.replace(/'/g, ''')
str = str.replace(/`/g, '`')
str = str.replace(/\//g, '/')
return str
}
通过转义可以将攻击代码
<script>alert(1)</script>
变成
// -> <script>alert(1)</script>
escape('<script>alert(1)</script>')
但是对于显示富文本来说,显然不能通过上面的办法来转义所有字符,因为这样会把需要的格式也过滤掉。对于这种情况,通常采用白名单过滤的办法,当然也可以通过黑名单过滤,但是考虑到需要过滤的标签和标签属性实在太多,更加推荐使用白名单的方式
const xss = require('xss')
let html = xss('<h1 id="title">XSS Demo</h1><script>alert("xss");</script>')
// -> <h1>XSS Demo</h1><script>alert("xss");</script>
console.log(html)
以上示例使用了
js-xss
来实现,可以看到在输出中保留了h1
标签且过滤了script
标签
CSP
本质上就是建立白名单,开发者明确告诉浏览器哪些外部资源可以加载和执行。我们只需要配置规则,如何拦截是由浏览器自己实现的。我们可以通过这种方式来尽量减少XSS
攻击。
通常可以通过两种方式来开启 CSP :
HTTP Header
中的 Content-Security-Policy
meta
标签的方式 <meta http-equiv="Content-Security-Policy">
这里以设置 HTTP Header
来举例
只允许加载本站资源
Content-Security-Policy: default-src ‘self’
只允许加载 HTTPS 协议图片
Content-Security-Policy: img-src https://*
允许加载任何来源框架
Content-Security-Policy: child-src 'none'
当然可以设置的属性远不止这些,你可以通过查阅 文档 (opens new window)的方式来学习,这里就不过多赘述其他的属性了。
对于这种方式来说,只要开发者配置了正确的规则,那么即使网站存在漏洞,攻击者也不能执行它的攻击代码,并且
CSP
的兼容性也不错。
2 CSRF
跨站请求伪造(英语:
Cross-site request forgery
),也被称为one-click attack
或者session riding
,通常缩写为CSRF
或者XSRF
, 是一种挟制用户在当前已登录的Web
应用程序上执行非本意的操作的攻击方法
CSRF
就是利用用户的登录态发起恶意请求
如何攻击
假设网站中有一个通过 Get 请求提交用户评论的接口,那么攻击者就可以在钓鱼网站中加入一个图片,图片的地址就是评论接口
<img src="http://www.domain.com/xxx?comment='attack'"/>
res.setHeader('Set-Cookie', `username=poetry2;sameSite = strict;path=/;httpOnly;expires=${getCookirExpires()}`)
在B网站,危险网站向A网站发起请求
<!DOCTYPE html>
<html>
<body>
<!-- 利用img自动发送请求 -->
<img src="http://localhost:8000/api/user/login" />
</body>
</html>
会带上A网站的cookie
// 在A网站下发cookie的时候,加上sameSite=strict,这样B网站在发送A网站请求,不会自动带上A网站的cookie,保证了安全
// NAME=VALUE 赋予Cookie的名称及对应值
// expires=DATE Cookie 的有效期
// path=PATH 赋予Cookie的名称及对应值
// domain=域名 作为 Cookie 适用对象的域名 (若不指定则默认为创建 Cookie 的服务器的域名) (一般不指定)
// Secure 仅在 HTTPS 安全通信时才会发送 Cookie
// HttpOnly 加以限制,使 Cookie 不能被 JavaScript 脚本访问
// SameSite Lax|Strict|None 它允许您声明该Cookie是否仅限于第一方或者同一站点上下文
res.setHeader('Set-Cookie', `username=poetry;sameSite=strict;path=/;httpOnly;expires=${getCookirExpires()}`)
如何防御
Get
请求不对数据进行修改Cookie
token
SameSite Cookies
: 只能当前域名的网站发出的http请求,携带这个Cookie
。当然,由于这是新的cookie属性,在兼容性上肯定会有问题CSRF攻击,仅仅是利用了http携带cookie的特性进行攻击的,但是攻击站点还是无法得到被攻击站点的cookie。这个和XSS不同,XSS是直接通过拿到Cookie等信息进行攻击的
在CSRF攻击中,就Cookie相关的特性:
3 密码安全
加盐
对于密码存储来说,必然是不能明文存储在数据库中的,否则一旦数据库泄露,会对用户造成很大的损失。并且不建议只对密码单纯通过加密算法加密,因为存在彩虹表的关系
// 加盐也就是给原密码添加字符串,增加原密码长度
sha256(sha1(md5(salt + password + salt)))
但是加盐并不能阻止别人盗取账号,只能确保即使数据库泄露,也不会暴露用户的真实密码。一旦攻击者得到了用户的账号,可以通过暴力破解的方式破解密码。对于这种情况,通常使用验证码增加延时或者限制尝试次数的方式。并且一旦用户输入了错误的密码,也不能直接提示用户输错密码,而应该提示账号或密码错误
前端加密
虽然前端加密对于安全防护来说意义不大,但是在遇到中间人攻击的情况下,可以避免明文密码被第三方获取
4. 总结
XSS
:跨站脚本攻击,是一种网站应用程序的安全漏洞攻击,是代码注入的一种。常见方式是将恶意代码注入合法代码里隐藏起来,再诱发恶意代码,从而进行各种各样的非法活动防范:记住一点 “所有用户输入都是不可信的”,所以得做输入过滤和转义
CSRF
:跨站请求伪造,也称 XSRF
,是一种挟制用户在当前已登录的Web
应用程序上执行非本意的操作的攻击方法。与 XSS
相比,XSS
利用的是用户对指定网站的信任,CSRF
利用的是网站对用户网页浏览器的信任。防范:用户操作验证(验证码),额外验证机制(
token
使用)等
先理解两个概念:
⾮对称加密虽然安全性更⾼,但是带来的问题就是速度很慢,影响性能。
解决⽅案:
结合两种加密⽅式,将对称加密的密钥使⽤⾮对称加密的公钥进⾏加密,然后发送出去,接收⽅使⽤私钥进⾏解密得到对称加密的密钥,然后双⽅可以使⽤对称加密来进⾏沟通。
此时⼜带来⼀个问题,中间⼈问题:
如果此时在客户端和服务器之间存在⼀个中间⼈,这个中间⼈只需要把原本双⽅通信互发的公钥,换成⾃⼰的公钥,这样中间⼈就可以轻松解密通信双⽅所发送的所有数据。
所以这个时候需要⼀个安全的第三⽅颁发证书(CA),证明身份的身份,防⽌被中间⼈攻击。 证书中包括:签发者、证书⽤途、使⽤者公钥、使⽤者私钥、使⽤者的HASH算法、证书到期时间等。
但是问题来了,如果中间⼈篡改了证书,那么身份证明是不是就⽆效了?这个证明就⽩买了,这个时候需要⼀个新的技术,数字签名。
数字签名就是⽤CA⾃带的HASH算法对证书的内容进⾏HASH得到⼀个摘要,再⽤CA的私钥加密,最终组成数字签名。当别⼈把他的证书发过来的时候,我再⽤同样的Hash算法,再次⽣成消息摘要,然后⽤CA的公钥对数字签名解密,得到CA创建的消息摘要,两者⼀⽐,就知道中间有没有被⼈篡改了。这个时候就能最⼤程度保证通信的安全了。
1px 问题指的是:在一些 Retina屏幕
的机型上,移动端页面的 1px 会变得很粗,呈现出不止 1px 的效果。原因很简单——CSS 中的 1px 并不能和移动设备上的 1px 划等号。它们之间的比例关系有一个专门的属性来描述:
window.devicePixelRatio = 设备的物理像素 / CSS像素。
打开 Chrome 浏览器,启动移动端调试模式,在控制台去输出这个 devicePixelRatio
的值。这里选中 iPhone6/7/8 这系列的机型,输出的结果就是2: 这就意味着设置的 1px CSS 像素,在这个设备上实际会用 2 个物理像素单元来进行渲染,所以实际看到的一定会比 1px 粗一些。 解决1px 问题的三种思路:
如果之前 1px 的样式这样写:
border:1px solid #333
可以先在 JS 中拿到 window.devicePixelRatio 的值,然后把这个值通过 JSX 或者模板语法给到 CSS 的 data 里,达到这样的效果(这里用 JSX 语法做示范):
<div id="container" data-device={{window.devicePixelRatio}}></div>
然后就可以在 CSS 中用属性选择器来命中 devicePixelRatio 为某一值的情况,比如说这里尝试命中 devicePixelRatio 为2的情况:
#container[data-device="2"] {
border:0.5px solid #333
}
直接把 1px 改成 1/devicePixelRatio 后的值,这是目前为止最简单的一种方法。这种方法的缺陷在于兼容性不行,IOS 系统需要8及以上的版本,安卓系统则直接不兼容。
这个方法的可行性会更高,兼容性也更好。唯一的缺点是代码会变多。
思路是先放大、后缩小:在目标元素的后面追加一个 ::after 伪元素,让这个元素布局为 absolute 之后、整个伸展开铺在目标元素上,然后把它的宽和高都设置为目标元素的两倍,border值设为 1px。接着借助 CSS 动画特效中的放缩能力,把整个伪元素缩小为原来的 50%。此时,伪元素的宽高刚好可以和原有的目标元素对齐,而 border 也缩小为了 1px 的二分之一,间接地实现了 0.5px 的效果。
代码如下:
#container[data-device="2"] {
position: relative;
}
#container[data-device="2"]::after{
position:absolute;
top: 0;
left: 0;
width: 200%;
height: 200%;
content:"";
transform: scale(0.5);
transform-origin: left top;
box-sizing: border-box;
border: 1px solid #333;
}
}
这个思路就是对 meta 标签里几个关键属性下手:
<meta name="viewport" content="initial-scale=0.5, maximum-scale=0.5, minimum-scale=0.5, user-scalable=no">
这里针对像素比为2的页面,把整个页面缩放为了原来的1/2大小。这样,本来占用2个物理像素的 1px 样式,现在占用的就是标准的一个物理像素。根据像素比的不同,这个缩放比例可以被计算为不同的值,用 js 代码实现如下:
const scale = 1 / window.devicePixelRatio;
// 这里 metaEl 指的是 meta 标签对应的 Dom
metaEl.setAttribute('content', `width=device-width,user-scalable=no,initial-scale=${scale},maximum-scale=${scale},minimum-scale=${scale}`);
这样解决了,但这样做的副作用也很大,整个页面被缩放了。这时 1px 已经被处理成物理像素大小,这样的大小在手机上显示边框很合适。但是,一些原本不需要被缩小的内容,比如文字、图片等,也被无差别缩小掉了。
客户端想获得一个服务器的数据,但是因为种种原因无法直接获取。于是客户端设置了一个代理服务器,并且指定目标服务器,之后代理服务器向目标服务器转交请求并将获得的内容发送给客户端。这样本质上起到了对真实服务器隐藏真实客户端的目的。实现正向代理需要修改客户端,比如修改浏览器配置。
服务器为了能够将工作负载分不到多个服务器来提高网站性能 (负载均衡)等目的,当其受到请求后,会首先根据转发规则来确定请求应该被转发到哪个服务器上,然后将请求转发到对应的真实服务器上。这样本质上起到了对客户端隐藏真实服务器的作用。
一般使用反向代理后,需要通过修改 DNS 让域名解析到代理服务器 IP,这时浏览器无法察觉到真正服务器的存在,当然也就不需要修改配置了。
正向代理和反向代理的结构是一样的,都是 client-proxy-server 的结构,它们主要的区别就在于中间这个 proxy 是哪一方设置的。在正向代理中,proxy 是 client 设置的,用来隐藏 client;而在反向代理中,proxy 是 server 设置的,用来隐藏 server。
class EventListener {
listeners = {};
on(name, fn) {
(this.listeners[name] || (this.listeners[name] = [])).push(fn)
}
once(name, fn) {
let tem = (...args) => {
this.removeListener(name, fn)
fn(...args)
}
fn.fn = tem
this.on(name, tem)
}
removeListener(name, fn) {
if (this.listeners[name]) {
this.listeners[name] = this.listeners[name].filter(listener => (listener != fn && listener != fn.fn))
}
}
removeAllListeners(name) {
if (name && this.listeners[name]) delete this.listeners[name]
this.listeners = {}
}
emit(name, ...args) {
if (this.listeners[name]) {
this.listeners[name].forEach(fn => fn.call(this, ...args))
}
}
}
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。