
大家好,又见面了,我是你们的朋友全栈君。
tf.pad()文档如下,
pad(tensor, paddings, mode=’CONSTANT’, name=None, constant_values=0) Pads a tensor. This operation pads a `tensor` according to the `paddings` you specify. `paddings` is an integer tensor with shape `[n, 2]`, where n is the rank of `tensor`. For each dimension D of `input`, `paddings[D, 0]` indicates how many values to add before the contents of `tensor` in that dimension, and `paddings[D, 1]` indicates how many values to add after the contents of `tensor` in that dimension. If `mode` is “REFLECT” then both `paddings[D, 0]` and `paddings[D, 1]` must be no greater than `tensor.dim_size(D) – 1`. If `mode` is “SYMMETRIC” then both `paddings[D, 0]` and `paddings[D, 1]` must be no greater than `tensor.dim_size(D)`. The padded size of each dimension D of the output is: `paddings[D, 0] + tensor.dim_size(D) + paddings[D, 1]`
实际使用注意,参数paddings元素数(rank)必须和输入维度一一对应,表示该维度前后填充的层数,文档示例验证如下,
import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
t = tf.constant([[1, 2, 3], [4, 5, 6]])
paddings = tf.constant([[1, 1,], [2, 2]])
# 'constant_values' is 0.
# rank of 't' is 2.
res = tf.pad(t, paddings, "CONSTANT", constant_values=1) # [[0, 0, 0, 0, 0, 0, 0],
# [0, 0, 1, 2, 3, 0, 0],
# [0, 0, 4, 5, 6, 0, 0],
# [0, 0, 0, 0, 0, 0, 0]]
print(sess.run(res))
'''
tf.pad(t, paddings, "REFLECT") # [[6, 5, 4, 5, 6, 5, 4],
# [3, 2, 1, 2, 3, 2, 1],
# [6, 5, 4, 5, 6, 5, 4],
# [3, 2, 1, 2, 3, 2, 1]]
tf.pad(t, paddings, "SYMMETRIC") # [[2, 1, 1, 2, 3, 3, 2],
# [2, 1, 1, 2, 3, 3, 2],
# [5, 4, 4, 5, 6, 6, 5],
# [5, 4, 4, 5, 6, 6, 5]]
'''发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/170267.html原文链接:https://javaforall.cn