前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >python 平均值/MAX/MIN值 计算从入门到精通「建议收藏」

python 平均值/MAX/MIN值 计算从入门到精通「建议收藏」

作者头像
全栈程序员站长
发布2022-09-08 08:50:19
1.8K0
发布2022-09-08 08:50:19
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

入门级计算

1、算数平均值
代码语言:javascript
复制
#样本:
S = [s1, s2, s3, …, sn]
#算术平均值:
m = (s1 + s2 + s3 + … + sn)/n

Numpy中的写法

代码语言:javascript
复制
m = numpy.mean(样本数组)
2、加权平均值
代码语言:javascript
复制
#样本:
S = [s1, s2, s3, …, sn] 
#权重:
W = [w1, w2, w3, …, wn] 
#加权平均值:
a = (s1w1 + s2w2 + s3w3 + … + snwn)/(w1 + w2 + w3 + … + wn)
3、Numpy中的格式

首先是数据源:需要求加权平均值的数据列表和对应的权值列表

代码语言:javascript
复制
elements = []
weights = []
使用numpy直接求:
代码语言:javascript
复制
import numpy as np
np.average(elements, weights=weights)
附纯python写法:
代码语言:javascript
复制
# 不使用numpy写法1
round(sum([elements[i]*weights[i] for i in range(n)])/sum(weights), 1)

# 不使用numpy写法2
round(sum([j[0]*j[1] for j in zip(elements, weights)])/sum(weights), 1)

定义函数计算一个序列的平均值的方法

代码语言:javascript
复制
def average(seq, total=0.0):   
  num = 0   
  for item in seq:   
    total += item   
    num += 1   
  return total / num  

如果序列是数组或者元祖可以简单使用下面的代码

代码语言:javascript
复制
def average(seq):   
 return float(sum(seq)) / len(seq)  
3、最大值与最小值

1、最大值、最小值 max:获取一个数组中最大元素 min:获取一个数组中最小元素

2、比较出最值数组 maximum:在两个数组的对应元素之间构造最大值数组 minimum:在两个数组的对应元素之间构造最小值数组

例:numpy.maximum(a, b):在a数组与b数组中的各个元素对应比较,每次取出较大的那个数构成一个新数组

3、练习

代码语言:javascript
复制
import numpy as np
# 最大值最小值
a = np.random.randint(10, 100, 9).reshape(3, 3)
print(a)
# print('最大值:', np.max(a), a.max())  # 最大值
# print('最小值:', np.min(a), a.min())  # 最小值
# print('最大值索引:', np.argmax(a), a.argmax())  # 数组扁平为一维后的最大值索引

# maximum最大值,minimum最小值
b = np.random.randint(10, 100, 9).reshape(3, 3)
print(b)
print('构造最大值数组:\n', np.maximum(a, b))
print('构造最小值数组:\n', np.minimum(a, b))

精通级学习

例一

有一个df:

代码语言:javascript
复制
             ID    wt  value
Date                        
01/01/2012  100  0.50     60
01/01/2012  101  0.75     80
01/01/2012  102  1.00    100
01/02/2012  201  0.50    100
01/02/2012  202  1.00     80

相关代码如下:

代码语言:javascript
复制
import numpy as np
import pandas as pd
index = pd.Index(['01/01/2012','01/01/2012','01/01/2012','01/02/2012','01/02/2012'], name='Date')
df = pd.DataFrame({'ID':[100,101,102,201,202],'wt':[.5,.75,1,.5,1],'value':[60,80,100,100,80]},index=index)

按“值”加权并按指数分组的“wt”的平均值为:

代码语言:javascript
复制
Date
01/01/2012    0.791667
01/02/2012    0.722222
dtype: float64

或者,也可以定义函数:

代码语言:javascript
复制
def grouped_weighted_avg(values, weights, by):
      return (values * weights).groupby(by).sum() / weights.groupby(by).sum()
grouped_weighted_avg(values=df.wt, weights=df.value, by=df.index)

Date
01/01/2012    0.791667
01/02/2012    0.722222
dtype: float64

更复杂的:

代码语言:javascript
复制
grouped = df.groupby('Date')
def wavg(group):
    d = group['value']
    w = group['wt']
    return (d * w).sum() / w.sum()
grouped.apply(wavg)

例二

代码语言:javascript
复制
  ind  dist  diff  cas
0  la  10.0  0.54  1.0
1   p   5.0  3.20  2.0
2  la   7.0  8.60  3.0
3  la   8.0  7.20  4.0
4   p   7.0  2.10  5.0
5   g   2.0  1.00  6.0
6   g   5.0  3.50  7.0
7  la   3.0  4.50  8.0


df = pd.DataFrame({'ind':['la','p','la','la','p','g','g','la'],
                        'dist':[10.,5.,7.,8.,7.,2.,5.,3.],
                        'diff':[0.54,3.2,8.6,7.2,2.1,1.,3.5,4.5],
                        'cas':[1.,2.,3.,4.,5.,6.,7.,8.]})

生成一列(使用 transform在组内获得标准化权重)weight df['weight'] = df['dist'] / df.groupby('ind')['dist'].transform('sum') df

代码语言:javascript
复制
  ind  dist  diff  cas    weight
0  la  10.0  0.54  1.0  0.357143
1   p   5.0  3.20  2.0  0.416667
2  la   7.0  8.60  3.0  0.250000
3  la   8.0  7.20  4.0  0.285714
4   p   7.0  2.10  5.0  0.583333
5   g   2.0  1.00  6.0  0.285714
6   g   5.0  3.50  7.0  0.714286
7  la   3.0  4.50  8.0  0.107143

将这些权重乘以这些值,并取总和:

代码语言:javascript
复制
df['wcas'], df['wdiff'] = (df[n] * df['weight'] for n in ('cas', 'diff'))
df.groupby('ind')[['wcas', 'wdiff']].sum()

         wcas     wdiff
ind                    
g    6.714286  2.785714
la   3.107143  4.882143
p    3.750000  2.558333

变异的写法:

代码语言:javascript
复制
backup = df.copy()     # make a backup copy to mutate in place
cols = df.columns[:2]  # cas, diff
df[cols] = df['weight'].values[:, None] * df[cols]
df.groupby('ind')[cols].sum()

          cas      diff
ind                    
g    6.714286  2.785714
la   3.107143  4.882143
p    3.750000  2.558333

例四(比较直观)

代码语言:javascript
复制
df = pd.DataFrame([('bird', 'Falconiformes', 389.0),
   ...:                    ('bird', 'Psittaciformes', 24.0),
   ...:                    ('mammal', 'Carnivora', 80.2),
   ...:                    ('mammal', 'Primates', np.nan),
   ...:                    ('mammal', 'Carnivora', 58)],
   ...:                   index=['falcon', 'parrot', 'lion', 'monkey', 'leopard'],
   ...:                   columns=('class', 'order', 'max_speed'))
代码语言:javascript
复制
df: 
          class           order  max_speed
falcon     bird   Falconiformes      389.0
parrot     bird  Psittaciformes       24.0
lion     mammal       Carnivora       80.2
monkey   mammal        Primates        NaN
leopard  mammal       Carnivora       58.0

grouped = df.groupby('class')
grouped.sum()
Out: 
        max_speed
class            
bird        413.0
mammal      138.2

例五

代码语言:javascript
复制
df = pd.DataFrame({'animal': 'cat dog cat fish dog cat cat'.split(),
      'size': list('SSMMMLL'),
      'weight': [8, 10, 11, 1, 20, 12, 12],
      'adult': [False] * 5 + [True] * 2})
df: 
  animal size  weight  adult
0    cat    S       8  False
1    dog    S      10  False
2    cat    M      11  False
3   fish    M       1  False
4    dog    M      20  False
5    cat    L      12   True
6    cat    L      12   True

List the size of the animals with the highest weight.

代码语言:javascript
复制
df.groupby('animal').apply(lambda subf: subf['size'][subf['weight'].idxmax()])
Out: 
animal
cat     L
dog     M
fish    M
dtype: object

其它参考文档:

理解Pandas的Transform https://www.jianshu.com/p/20f15354aedd https://www.jianshu.com/p/509d7b97088c https://zhuanlan.zhihu.com/p/86350553 http://www.zyiz.net/tech/detail-136539.html

pandas:apply和transform方法的性能比较 https://www.cnblogs.com/wkang/p/9794678.html

https://www.jianshu.com/p/20f15354aedd https://zhuanlan.zhihu.com/p/101284491?utm_source=wechat_session https://www.cnblogs.com/bjwu/p/8970818.html https://www.jianshu.com/p/42f1d2909bb6

官网的例子 https://pandas.pydata.org/pandas-docs/dev/user_guide/groupby.html https://pandas.pydata.org/pandas-docs/stable/user_guide/cookbook.html#cookbook-grouping https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.transform.html

pandas 数据聚合与分组运算

获得Pandas中几列的加权平均值和标准差 https://xbuba.com/questions/48307663

Pandas里面的加权平均,我猜你不会用! https://blog.csdn.net/ddxygq/article/details/101351686

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/156147.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 入门级计算
    • 1、算数平均值
      • 2、加权平均值
        • 3、Numpy中的格式
          • 使用numpy直接求:
            • 附纯python写法:
              • 3、最大值与最小值
              • 精通级学习
                • 例一
                  • 例二
                    • 例四(比较直观)
                      • 例五
                      领券
                      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档