Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >SLAM算法解析[通俗易懂]

SLAM算法解析[通俗易懂]

作者头像
全栈程序员站长
发布于 2022-09-07 01:50:51
发布于 2022-09-07 01:50:51
5.7K0
举报

大家好,又见面了,我是你们的朋友全栈君。

ref:

https://www.jianshu.com/p/eb25bd481475

【嵌牛导读】:SLAM(Simultaneous Localization and Mapping) 是业界公认视觉领域空间定位技术的前沿方向,中文译名为「同步定位与地图构建」,它主要用于解决机器人在未知环境运动时的定位和地图构建问题。

嵌牛鼻子】:有人就曾打比方,若是手机离开了 WIFI 和数据网络,就像无人车和机器人,离开了 SLAM 一样。

【嵌牛正文】:目前科技发展速度飞快,想让用户在 AR/VR、机器人、无人机、无人驾驶领域体验加强,还是需要更多前沿技术做支持,SLAM 就是其中之一。实际上,有人就曾打比方,若是手机离开了 WIFI 和数据网络,就像无人车和机器人,离开了 SLAM 一样。

在 VR/AR 方面,根据 SLAM 得到地图和当前视角对叠加虚拟物体做相应渲染,这样做可以使得叠加的虚拟物体看起来比较真实,没有违和感。在无人机领域,可以使用 SLAM 构建局部地图,辅助无人机进行自主避障、规划路径。在无人驾驶方面,可以使用 SLAM 技术提供视觉里程计功能,然后跟其他的定位方式融合。机器人定位导航方面,SLAM 可以用于生成环境的地图。基于这个地图,机器人执行路径规划、自主探索、导航等任务。

SLAM 技术的发展距今已有 30 余年的历史,涉及的技术领域众多。由于本身包含许多步骤,每一个步骤均可以使用不同算法实现,SLAM 技术也是机器人和计算机视觉领域的热门研究方向。

SLAM 的英文全程是 Simultaneous Localization and Mapping,中文称作「同时定位与地图创建」。SLAM 试图解决这样的问题:一个机器人在未知的环境中运动,如何通过对环境的观测确定自身的运动轨迹,同时构建出环境的地图。SLAM 技术正是为了实现这个目标涉及到的诸多技术的总和。

SLAM 技术涵盖的范围非常广,按照不同的传感器、应用场景、核心算法,SLAM 有很多种分类方法。按照传感器的不同,可以分为基于激光雷达的 2D/3D SLAM、基于深度相机的 RGBD SLAM、基于视觉传感器的 visual SLAM(以下简称 vSLAM)、基于视觉传感器和惯性单元的 visual inertial odometry(以下简称 VIO)。

基于激光雷达的 2D SLAM 相对成熟,早在 2005 年,Sebastian Thrun 等人的经典著作《概率机器人学》将 2D SLAM 研究和总结得非常透彻,基本确定了激光雷达 SLAM 的框架。目前常用的 Grid Mapping 方法也已经有 10 余年的历史。2016 年,Google 开源了激光雷达 SLAM 程序 Cartographer,可以融合 IMU 信息,统一处理 2D 与 3D SLAM 。目前 2D SLAM 已经成功地应用于扫地机器人中。

基于深度相机的 RGBD SLAM 过去几年也发展迅速。自微软的 Kinect 推出以来,掀起了一波 RGBD SLAM 的研究热潮,短短几年时间内相继出现了几种重要算法,例如 KinectFusion、Kintinuous、Voxel Hashing、DynamicFusion 等。微软的 Hololens 应该集成了 RGBD SLAM,在深度传感器可以工作的场合,它可以达到非常好的效果。

视觉传感器包括单目相机、双目相机、鱼眼相机等。由于视觉传感器价格便宜,在室内室外均可以使用,因此 vSLAM 是研究的一大热点。早期的 vSLAM 如 monoSLAM 更多的是延续机器人领域的滤波方法。现在使用更多的是计算机视觉领域的优化方法,具体来说,是运动恢复结构(structure-from-motion)中的光束法平差(bundle adjustment)。在 vSLAM 中,按照视觉特征的提取方式,又可以分为特征法、直接法。当前 vSLAM 的代表算法有 ORB-SLAM、SVO、DSO 等。

视觉传感器对于无纹理的区域是没有办法工作的。惯性测量单元(IMU)通过内置的陀螺仪和加速度计可以测量角速度和加速度,进而推算相机的姿态,不过推算的姿态存在累计误差。视觉传感器和 IMU 存在很大的互补性,因此将二者测量信息进行融合的 VIO 也是一个研究热点。按照信息融合方式的不同,VIO 又可以分为基于滤波的方法、基于优化的方法。VIO 的代表算法有 EKF、MSCKF、preintegration、OKVIS 等。Google 的 Tango 平板就实现了效果不错 VIO。

总的来说,相比于基于激光雷达和基于深度相机的 SLAM,基于视觉传感器的 vSLAM 和 VIO 还不够成熟,操作比较难,通常需要融合其他传感器或者在一些受控的环境中使用。

ref: https://www.leiphone.com/news/201605/5etiwlnkWnx7x0zb.html

SLAM的前世

定位、定向、测速、授时是人们惆怅千年都未能完全解决的问题,最早的时候,古人只能靠夜观天象和司南来做简单的定向。直至元代,出于对定位的需求,才华横溢的中国人发明了令人叹为观止的牵星术,用牵星板测量星星实现纬度估计。

1964年美国投入使用GPS,突然就打破了大家的游戏规则。军用的P码可以达到1-2米级精度,开放给大众使用的CA码也能够实现5-10米级的精度。

后来大家一方面为了突破P码封锁,另一方面为了追求更高的定位定姿精度,想出了很多十分具有创意的想法来挺升GPS的精度。利用RTK的实时相位差分技术,甚至能实现厘米的定位精度,基本上解决了室外的定位和定姿问题。

但是室内这个问题就难办多了,为了实现室内的定位定姿,一大批技术不断涌现,其中,SLAM技术逐渐脱颖而出。SLAM是一个十分交叉学科的领域,我先从它的传感器讲起。

离不开这两类传感器

目前用在SLAM上的Sensor主要分两大类,激光雷达和摄像头。

这里面列举了一些常见的雷达和各种深度摄像头。激光雷达有单线多线之分,角分辨率及精度也各有千秋。SICK、velodyne、Hokuyo以及国内的北醒光学、Slamtech是比较有名的激光雷达厂商。他们可以作为SLAM的一种输入形式。

这个小视频里展示的就是一种简单的2D SLAM。

这个小视频是宾大的教授kumar做的特别有名的一个demo,是在无人机上利用二维激光雷达做的SLAM。

而VSLAM则主要用摄像头来实现,摄像头品种繁多,主要分为单目、双目、单目结构光、双目结构光、ToF几大类。他们的核心都是获取RGB和depth map(深度信息)。简单的单目和双目(Zed、leapmotion)我这里不多做解释,我主要解释一下结构光和ToF。

最近流行的结构光和TOF

结构光原理的深度摄像机通常具有激光投射器、光学衍射元件(DOE)、红外摄像头三大核心器件。

这个图(下图)摘自primesense的专利。

可以看到primesense的doe是由两部分组成的,一个是扩散片,一个是衍射片。先通过扩散成一个区域的随机散斑,然后复制成九份,投射到了被摄物体上。根据红外摄像头捕捉到的红外散斑,PS1080这个芯片就可以快速解算出各个点的深度信息。

这儿还有两款结构光原理的摄像头。

第一页它是由两幅十分规律的散斑组成,最后同时被红外相机获得,精度相对较高。但据说DOE成本也比较高。

还有一种比较独特的方案(最后一幅图),它采用mems微镜的方式,类似DLP投影仪,将激光器进行调频,通过微镜反射出去,并快速改变微镜姿态,进行行列扫描,实现结构光的投射。(产自ST,ST经常做出一些比较炫的黑科技)。

ToF(time of flight)也是一种很有前景的深度获取方法。

传感器发出经调制的近红外光,遇物体后反射,传感器通过计算光线发射和反射时间差或相位差,来换算被拍摄景物的距离,以产生深度信息。类似于雷达,或者想象一下蝙蝠,softkinetic的DS325采用的就是ToF方案(TI设计的),但是它的接收器微观结构比较特殊,有2个或者更多快门,测ps级别的时间差,但它的单位像素尺寸通常在100um的尺寸,所以目前分辨率不高。以后也会有不错的前景,但我觉得并不是颠覆性的。

好,那在有了深度图之后呢,SLAM算法就开始工作了,由于Sensor和需求的不同,SLAM的呈现形式略有差异。大致可以分为激光SLAM(也分2D和3D)和视觉SLAM(也分Sparse、semiDense、Dense)两类,但其主要思路大同小异。

这个是Sparse(稀疏)的

这个偏Dense(密集)的

▌SLAM算法实现的4要素

SLAM算法在实现的时候主要要考虑以下4个方面吧:

1. 地图表示问题,比如dense和sparse都是它的不同表达方式,这个需要根据实际场景需求去抉择 2. 信息感知问题,需要考虑如何全面的感知这个环境,RGBD摄像头FOV通常比较小,但激光雷达比较大 3. 数据关联问题,不同的sensor的数据类型、时间戳、坐标系表达方式各有不同,需要统一处理 4. 定位与构图问题,就是指怎么实现位姿估计和建模,这里面涉及到很多数学问题,物理模型建立,状态估计和优化

其他的还有回环检测问题,探索问题(exploration),以及绑架问题(kidnapping)。

这个是一个比较有名的SLAM算法,这个回环检测就很漂亮。但这个调用了cuda,gpu对运算能力要求挺高,效果看起来比较炫。

▌以VSLAM举个栗子

我大概讲一种比较流行的VSLAM方法框架。

整个SLAM大概可以分为前端和后端,前端相当于VO(视觉里程计),研究帧与帧之间变换关系。首先提取每帧图像特征点,利用相邻帧图像,进行特征点匹配,然后利用RANSAC去除大噪声,然后进行匹配,得到一个pose信息(位置和姿态),同时可以利用IMU(Inertial measurement unit惯性测量单元)提供的姿态信息进行滤波融合

后端则主要是对前端出结果进行优化,利用滤波理论(EKF、UKF、PF)、或者优化理论TORO、G2O进行树或者图的优化。最终得到最优的位姿估计。

后端这边难点比较多,涉及到的数学知识也比较多,总的来说大家已经慢慢抛弃传统的滤波理论走向图优化去了。

因为基于滤波的理论,滤波器稳度增长太快,这对于需要频繁求逆的EKF(扩展卡尔曼滤波器),PF压力很大。而基于图的SLAM,通常以keyframe(关键帧)为基础,建立多个节点和节点之间的相对变换关系,比如仿射变换矩阵,并不断地进行关键节点的维护,保证图的容量,在保证精度的同时,降低了计算量。

列举几个目前比较有名的SLAM算法:PTAM,MonoSLAM, ORB-SLAM,RGBD-SLAM,RTAB-SLAM,LSD-SLAM。

所以大家如果想学习SLAM的话,各个高校提高的素材是很多的,比如宾大、MIT、ETH、香港科技大学、帝国理工等等都有比较好的代表作品,还有一个比较有前景的就是三维的机器视觉,普林斯顿大学的肖剑雄教授结合SLAM和Deep Learning做一些三维物体的分类和识别, 实现一个对场景深度理解的机器人感知引擎。

http://robots.princeton.edu/talks/2016_MIT/RobotPerception.pdf 这是他们的展示。

总的来说,SLAM技术从最早的军事用途(核潜艇海底定位就有了SLAM的雏形)到今天,已经逐步走入人们的视野,扫地机器人的盛行更是让它名声大噪。同时基于三维视觉的VSLAM越来越显主流。在地面/空中机器人、VR/AR/MR、汽车/AGV自动驾驶等领域,都会得到深入的发展,同时也会出现越来越多的细分市场等待挖掘。

这个是occipital团队出的一个产品,是个很有意思的应用,国内卖4000+,大概一个月1000出货量吧(虽然不是很多,但是效果不错,pad可玩)虚拟家居、无人飞行/驾驶、虚拟试衣、3D打印、刑侦现场记录、沉浸式游戏、增强现实、商场推送、设计辅助、地震救援、工业流水线、GIS采集等等,都等待着VSLAM技术一展宏图

▌SLAM的今生——还存在着问题

多传感器融合、优化数据关联与回环检测、与前端异构处理器集成、提升鲁棒性和重定位精度都是SLAM技术接下来的发展方向,但这些都会随着消费刺激和产业链的发展逐步解决。就像手机中的陀螺仪一样,在不久的将来,也会飞入寻常百姓家,改变人类的生活。

不过说实话,SLAM在全面进入消费级市场的过程中,也面对着一些阻力和难题。比如Sensor精度不高、计算量大、Sensor应用场景不具有普适性等等问题。

多传感器融合、优化数据关联与回环检测、与前端异构处理器集成、提升鲁棒性和重定位精度都是SLAM技术接下来的发展方向,但这些都会随着消费刺激和产业链的发展逐步解决。就像手机中的陀螺仪一样,在不久的将来,也会飞入寻常百姓家,改变人类的生活。

(激光雷达和摄像头两种 SLAM 方式各有什么优缺点呢,有没有一种综合的方式互补各自的缺点的呢?)

激光雷达优点是可视范围广,但是缺点性价比低,低成本的雷达角分辨率不够高,影响到建模精度。vSLAM的话缺点就是FOV通常不大,50-60degree,这样高速旋转时就容易丢,解决方案有的,我们公司就在做vSLAM跟雷达还有IMU的组合。

(请问目前基于视觉的SLAM的计算量有多大?嵌入式系统上如果要做到实时30fps,是不是只有Nvidia的芯片(支持cuda)才可以?)

第一个问题,虽然基于视觉的SLAM计算量相对较大,但在嵌入式系统上是可以跑起来的,Sparse的SLAM可以达到30-50hz(也不需要GPU和Cuda),如果dense的话就比较消耗资源,根据点云还有三角化密度可调,10-20hz也是没有问题。

并不一定要用cuda,一些用到cuda和GPU的算法主要是用来加速SIFT、ICP,以及后期三角化和mesh的过程,即使不用cuda可以采用其他的特征点提取和匹配策略也是可以的。

▌最后一个问题

机器人的未来趋势怎么看?

这个问题就比较大了。

机器人产业是个很大的Ecosystem,短时间来讲,可能产业链不够完整,消费级市场缺乏爆点爆款。虽然大家都在谈论做机器人,但是好多公司并没有解决用户痛点,也没有为机器人产业链创造什么价值。

但是大家可以看到, 大批缺乏特色和积淀的机器人公司正在被淘汰,行业格局越来越清晰,分工逐渐完善,一大批细分市场成长起来。

从机器人的感知部分来说,传感器性能提升、前端处理(目前的sensor前端处理做的太少,给主CPU造成了很大的负担)、多传感器融合是一个很大的增长点。

现在人工智能也开始扬头,深度学习、神经网络专用的分布式异构处理器及其协处理器成为紧急需求,我个人很希望国内有公司能把这块做好。

也有好多创业公司做底层工艺比如高推重比电机、高能量密度电池、复合材料,他们和机器人产业的对接,也会加速机器人行业的发展。整个机器人生态架构会越来越清晰,从硬件层到算法层到功能层到SDK 再到应用层,每一个细分领域都有公司切入,随着这些产业节点的完善,能看到机器人行业的前景还是很棒的,相信不久之后就会迎来堪比互联网的指数式增长!

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/147747.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
专栏 | 对比激光SLAM与视觉SLAM:谁会成为未来主流趋势?
机器之心专栏 作者:思岚科技 SLAM(同步定位与地图构建),是指运动物体根据传感器的信息,一边计算自身位置,一边构建环境地图的过程,解决机器人等在未知环境下运动时的定位与地图构建问题。目前,SLAM 的主要应用于机器人、无人机、无人驾驶、AR、VR 等领域。其用途包括传感器自身的定位,以及后续的路径规划、运动性能、场景理解。 由于传感器种类和安装方式的不同,SLAM 的实现方式和难度会有一定的差异。按传感器来分,SLAM 主要分为激光 SLAM 和 VSLAM 两大类。其中,激光 SLAM 比 VS
机器之心
2018/05/09
2.5K0
​SLAM | 融合激光雷达与图像数据,通过3D高斯溅射实现室内精确定位!
光学传感器外方位估计以及同时重建三维(3D)环境的问题在计算机视觉领域中通常被称为SfM(Structure from Motion),在机器人学中被称为SLAM(Simultaneous Localisation and Mapping)[1]。
AIGC 先锋科技
2024/07/08
2.4K0
​SLAM  |   融合激光雷达与图像数据,通过3D高斯溅射实现室内精确定位!
深度相机+激光雷达实现SLAM建图与导航
随着机器视觉,自动驾驶等颠覆性的技术逐步发展,采用3D相机进行物体识别,行为识别,场景建模的相关应用越来越多,可以说深度相机就是终端和机器人的眼睛,那么什么是深度相机呢,跟之前的普通相机(2D)想比较,又有哪些差别?深度相机又称之为3D相机,顾名思义,就是通过该相机能检测出拍摄空间的景深距离,这也是与普通摄像头最大的区别。
一点人工一点智能
2023/03/05
4.3K0
深度相机+激光雷达实现SLAM建图与导航
漫谈 SLAM 技术(上)
DancingWind
2017/09/11
11.7K0
漫谈 SLAM 技术(上)
vSLAM开发指南:从技术框架、开源算法到硬件选型!
出品 | 智东西公开课 讲师 | 小觅智能 CTO 杨瑞翾 编辑 | 王鑫
小白学视觉
2019/12/24
3.8K0
vSLAM开发指南:从技术框架、开源算法到硬件选型!
M2DGR:多源多场景 地面机器人SLAM数据集(ICRA 2022 )
ICRA官方分享:https://www.bilibili.com/video/BV1q3411G7iF
3D视觉工坊
2023/04/29
9490
M2DGR:多源多场景 地面机器人SLAM数据集(ICRA 2022 )
视觉slam和激光slam结合_视觉slam和激光slam
早在 2005 年的时候,激光 SLAM 就已经被研究的比较透彻,框架也已初步确定。激光 SLAM,是目前最稳定、最主流的定位导航方法。
全栈程序员站长
2022/09/23
1K0
视觉slam和激光slam结合_视觉slam和激光slam
近十年的VI-SLAM算法综述与发展(附链接)
本文转载自INDEMIND,作者半不闲居士@CSDN。文章仅用于学术分享。本文约7000字,建议阅读14分钟本文为作者在从事Slam相关工作中对这几年遇到以及改进过相关VIO算法内容总结。 1、背景介绍 一个完整的 SLAM(simultaneous localization and mapping) 框架包括传感器数据、 前端、 后端、 回环检测与建图,如图1所示,其中,前端将传感器的数据抽象成适用于估计的模型,回环检测判断机器人是否经过已知的位置。而后端接受不同时刻前端测量的位姿和回环检测的信息并对它们
数据派THU
2022/04/21
2.7K0
近十年的VI-SLAM算法综述与发展(附链接)
一文详解SLAM的主要任务和开源框架
SLAM是Simultaneous localization and mapping缩写,意为“同步定位与建图”.
3D视觉工坊
2021/04/13
3K0
一文详解SLAM的主要任务和开源框架
SLAM综述(4)激光与视觉融合SLAM
SLAM包含了两个主要的任务:定位与构图,在移动机器人或者自动驾驶中,这是一个十分重要的问题:机器人要精确的移动,就必须要有一个环境的地图,那么要构建环境的地图就需要知道机器人的位置。
点云PCL博主
2020/06/12
4.8K0
SLAM(Simultaneous Localization and Mapping,同时定位与地图构建)技术详解
在当今技术迅猛发展的时代,自动导航与定位技术已成为研究的热点。其中,SLAM(Simultaneous Localization and Mapping,即同时定位与地图构建)技术在无人驾驶汽车、机器人导航等领域展现出了广泛的应用前景。本文旨在深入浅出地解析SLAM地图算法的原理和应用,使我们在这一领域的知识更加丰富和深入。
运维开发王义杰
2024/02/26
3.5K0
激光slam综述_SLAM是什么
slam (Simultaneous Localization and Mapping)叫即时定位与建图,它主要的作用是让机器人在未知的环境中,完成定位(Localization),建图(Mapping)和路径规划(Navigation)。
全栈程序员站长
2022/09/23
1.4K0
激光slam综述_SLAM是什么
两万字 | 视觉SLAM研究综述与未来趋势讨论
摘要:近年来,基于视觉传感器在同时定位与地图构建(SLAM)系统中展示出了显著的性能、准确性和效率。在这里,视觉同时定位与地图构建(VSLAM)方法是指使用相机进行姿态估计和地图生成的SLAM方法。
一点人工一点智能
2022/12/25
1.6K0
两万字 | 视觉SLAM研究综述与未来趋势讨论
增强现实中应用的VSLAM技术综述
文章:A Review of VSLAM Technology Applied in Augmented Reality
点云PCL博主
2024/11/28
3540
增强现实中应用的VSLAM技术综述
使用myAGV、Jetson Nano主板和3D摄像头,实现了RTAB-Map的三维建图功能
在现代机器人技术中,高精度的环境感知与建图是实现自主导航的关键。本文将展示如何使用myAGV Jetson Nano移动平台搭载Jetson Nano BO1主板,结合RTAB-Map和3D相机,实现更加立体和细致的环境建图。myAGV Jetson Nano具备SLAM雷达导航功能,Jetson Nano提供了强大的计算能力,适合处理复杂的SLAM任务。通过引入3D摄像头,我们能够将摄像头采集的深度信息融入到地图中,使其不仅具有平面数据,还包含了丰富的立体信息。在本文中,我们将详细介绍这一过程中使用的技术,以及解决实施中遇到的问题。
大象机器人
2024/08/28
4561
使用myAGV、Jetson Nano主板和3D摄像头,实现了RTAB-Map的三维建图功能
slam技术前景_技术市场的概念
大家好,又见面了,我是你们的朋友全栈君。 SLAM技术与市场杂谈 SLAM(simultaneous localization and mapping)全称即时定位与地图构建或并发建图与定位,主要的作用是让机器人在未知的环境中,完成定位(Localization),建图(Mapping)和路径规划(Navigation)。 目前,SLAM技术被广泛运用于机器人、无人机、无人驾驶、AR、VR等领域,依靠传感器可实现机器的自主定位、建图、路径规划等功能。 主流的slam技术应用有两种,分别是激光
全栈程序员站长
2022/11/15
1.5K0
slam技术前景_技术市场的概念
一文详解高精地图构建与SLAM感知优化建图策略
高精度地图对自动驾驶系统功能研发的影响已经越来越明显,整体上来讲主要包含但不仅限于提升车端感知性能、拓展自动驾驶新功能、动态建图等相关应用。具体体现在如下几个重要方面:
3D视觉工坊
2021/03/19
7.4K0
一文详解高精地图构建与SLAM感知优化建图策略
基于RGBD的slam_rgb算法
首先,我们需要知道什么是SLAM(simultaneous localization and mapping, 详见SlamCN),SLAM,即时定位与制图,包含3个关键词:实时、定位、制图,就是实时完成定位和制图的任务,这就是SLAM要解决的基本任务。按照使用的传感器分为激光SLAM(LOAM、V-LOAM、cartographer)与视觉SLAM,其中视觉SLAM又可分为单目SLAM(MonoSLAM、PTAM、DTAM、LSD-SLAM、ORB-SLAM(单目为主)、SVO)、双目SLAM(LIBVISO2、S-PTAM等)、RGBD SLAM(KinectFusion、ElasticFusion、Kintinous、RGBD SLAM2、RTAB SLAM);视觉SLAM由前端(视觉里程计)、后端(位姿优化)、闭环检测、制图4个部分组成,按照前端方法分为特征点法(稀疏法)、光流法、稀疏直接法、半稠密法、稠密法(详见高翔《视觉slam十四讲》第xx章);按照后端方法分为基于滤波(详见SLAM中的EKF,UKF,PF原理简介)与基于图优化(详见深入理解图优化与g2o:图优化篇与深入理解图优化与g2o:g2o篇)的方法。
全栈程序员站长
2022/10/02
7330
基于RGBD的slam_rgb算法
slam技术前景_无人机航拍技术毕业论文
过去几年,扫地机的出现使得SLAM名声大噪,这个被业界认为是实现机器人自主移动的关键技术,已逐渐进入人们的视野,而随着无人驾驶、AGV等行业的兴起,又使其找到了另一片广阔天地。
全栈程序员站长
2022/09/27
7570
slam技术前景_无人机航拍技术毕业论文
激光slam与视觉slam优缺点_摄影光学与镜头
Slam:同步定位与建图,就是在定位的同时,建立环境地图。 主要思路是根据运动学模型计算位姿,并通过传感得到的环境信息,对估计位姿调整优化,从而得到准确位姿,根据定位及感知数据绘制地图。 下图为slam主流框架:
全栈程序员站长
2022/09/23
3.6K0
激光slam与视觉slam优缺点_摄影光学与镜头
推荐阅读
相关推荐
专栏 | 对比激光SLAM与视觉SLAM:谁会成为未来主流趋势?
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档