前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >有监督学习、无监督学习以及半监督学习详解

有监督学习、无监督学习以及半监督学习详解

作者头像
全栈程序员站长
发布于 2022-09-01 03:11:23
发布于 2022-09-01 03:11:23
2.5K0
举报

大家好,又见面了,我是你们的朋友全栈君。

相信大家在开始学习机器学习的入门时,首先接触的概念就是监督学习、无监督学习以及半监督学习。在我们开始讲解之前,我们先回顾一下什么是机器学习(ML)?

百度百科给出的定义是,机器学习是一门多学科交叉专业,涵盖概率论知识,统计学知识,近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时的模拟人类学习方式, 并将现有内容进行知识结构划分来有效提高学习效率。

从定义中,我们可以发现:

(1) 机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。

(2) 机器学习是对能通过经验自动改进的计算机算法的研究。

(3) 机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。

重温了机器学习的基础概念之后,我们正式进入我们的正文部分。

监督学习

监督学习是从标记的训练数据来推断一个功能的机器学习任务。利用一组已知类别的样本调整分类器参数,使其达到所要求性能的 过程,也称为监督训练或有教师学习。

根据已有的数据集,知道输入和输出结果之间的关系。根据这种已知的关系,训练得到一个最优的模型。也就是说,在监督学习中训练数据既有特征(feature)又有标签(label),通过训练,让机器可以自己找到特征和标签之间的联系,在面对只有特征没有标签的数据时,可以判断出标签。

监督学习有一种应用场景:回归和分类。

回归(Regression)

回归问题是针对于连续型变量的。

举个栗子:预测房屋价格

假设想要预测房屋价格,绘制了下面这样的数据集。水平轴上,不同房屋的尺寸是平方英尺,在竖直轴上,是不同房子的价格,单位时(千万$)。给定数据,假设一个人有一栋房子,750平方英尺,他要卖掉这栋房子,想知道能卖多少钱。

这个时候,监督学习中的回归算法就能派上用场了,我们可以根据数据集来画直线或者二阶函数等来拟合数据。

通过图像,我们可以看出直线拟合出来的150k,曲线拟合出来是200k,所以要不断训练学习,找到最合适的模型得到拟合数据(房价)。

回归通俗一点就是,对已经存在的点(训练数据)进行分析,拟合出适当的函数模型y=f(x),这里y就是数据的标签,而对于一个新的自变量x,通过这个函数模型得到标签y。

分类(Classification)

和回归最大的区别在于,分类是针对离散型的,输出的结果是有限的。

举个栗子:估计肿瘤性质

假设某人发现了一个乳腺瘤,在乳腺上有个z肿块,恶性瘤是危险的、有害的;良性瘤是无害的。

假设在数据集中,水平轴是瘤的尺寸,竖直轴是1或0,也可以是Y或N。在已知肿瘤样例中,恶性的标为1,良性的标为0。那么,如下,蓝色的样例便是良性的,红色的是恶性的。

这个时候,机器学习的任务就是估计该肿瘤的性质,是恶性的还是良性的。

那么分类就派上了用场,在这个例子中就是向模型输入人的各种数据的训练样本(这里是肿瘤的尺寸,当然现实生活里会用更多的数据,如年龄等),产生“输入一个人的数据,判断是否患有癌症”的结果,结果必定是离散的,只有“是”或“否”。

所以简单来说分类就是,要通过分析输入的特征向量,对于一个新的向量得到其标签。

无监督学习

定义:我们不知道数据集中数据、特征之间的关系,而是要根据聚类或一定的模型得到数据之间的关系。

可以这么说,比起监督学习,无监督学习更像是自学,让机器学会自己做事情,是没有标签(label)的。

接刚刚上面机器学习解释时用到的例子来更好理解一下二者的区别:

对于平时的考试来说,监督学习相当于我们做了很多题目都知道它的标准答案,所以在学习的过程中,我们可以通过对照答案,来分析问题找出方法,下一次在面对没有答案的问题时,往往也可以正确地解决。 而无监督学习,是我们不知道任何的答案,也不知道自己做得对不对,但是做题的过程中,就算不知道答案,我们还是可以大致的将语文,数学,英语这些题目分开,因为这些问题内在还是具有一定的联系。

如下图所示,在无监督学习中,我们只是给定了一组数据,我们的目标是发现这组数据中的特殊结构。例如我们使用无监督学习算法会将这组数据分成两个不同的簇,,这样的算法就叫聚类算法。

生活中的应用:

1.Google新闻按照内容结构的不同分成财经,娱乐,体育等不同的标签,这就是无监督学习中的聚类。

2.根据给定基因把人群分类。如图是DNA数据,对于一组不同的人我们测量他们DNA中对于一个特定基因的表达程度。然后根据测量结果可以用聚类算法将他们分成不同的类型。这就是一种无监督学习, 因为我们只是给定了一些数据,而并不知道哪些是第一种类型的人,哪些是第二种类型的人等等。

半监督学习

半监督学习(Semi-Supervised Learning,SSL)是模式识别和机器学习领域研究的重点问题,是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,以及同时使用标记数据,来进行模式识别工作。当使用半监督学习时,将会要求尽量少的人员来从事工作,同时,又能够带来比较高的准确性,因此,半监督学习正越来越受到人们的重视。

至于实例的话,大家可以去自己探讨一下。

本文参考:

链接:https://www.jianshu.com/p/682c88cee5a8 链接:https://baike.baidu.com/item/监督学习/9820109?fr=aladdin

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/140166.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年5月2,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
吴恩达笔记1_监督学习与非监督学习
在监督学习中,我们给学习算法一个数据集,比如一系列房子的数据,给定数据集中每个样本的正确价格,即它们实际的售价然后运用学习算法,算出更多的答案,我们需要估算一个连续值的结果,这属于回归问题
皮大大
2021/03/02
5980
有监督学习和无监督学习
一般情况下,机器学习分为有监督学习和无监督学习。 有监督学习 监督学习是指数据集的正确输出(right output)已知的情况下一类学习算法。因为输入和输出已知,意味着输入和输出之间有一个关系,监督
陆勤_数据人网
2018/02/28
1.4K0
有监督学习和无监督学习
吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习
吴恩达(Andrew Ng),毫无疑问,是全球人工智能(AI)领域的大 IP!然而,吴恩达从最早的 CS229,到后来的 deeplearning.ai 深度学习专项课程,还有其它 AI 资源,大神发布的 AI 知名课程和资料非常多。
红色石头
2022/01/20
9780
吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习
Machine Learning学习——定义、监督学习和无监督学习
1.Arther Samuel(1959):Machine Learning:Field fo study that gives computers the ability to learn without being explicitly programmed.
阳光罗诺
2018/09/26
7580
Machine Learning学习——定义、监督学习和无监督学习
有监督学习VS无监督学习「建议收藏」
标签就是指的分好的类别,指明标签就是告诉计算机,这个样本属于哪一类。对于聚类的话,是事先类别都没定义好,但是类别的个数一定要告诉计算机
全栈程序员站长
2022/09/01
5660
有监督学习VS无监督学习「建议收藏」
1吴恩达Meachine-Learing之监督学习和非监督学习
监督学习(Supervised Learning) 介绍监督学习。 其基本思想是,监督学习中,对于数据集中的每个数据, 都有相应的正确答案,(训练集) 算法就是基于这些来做出预测。 受监督的学习问题分为“回归”和“分类”问题。 回归(连续) 分类(离散) 在回归问题中,我们试图在连续输出中预测结果,这意味着我们正在尝试将输入变量映射到一些连续函数。 在分类问题中,我们试图用离散输出来预测结果。换句话说,我们正在尝试将输入变量映射到离散类别。 后面介绍了回归问题。 即通过回归来预测一个连续值输出。
双愚
2018/05/28
3510
【机器学习】机器学习系列:(一)机器学习基础
本章我们简要介绍下机器学习(Machine Learning)的基本概念。主要介绍机器学习算法的应用,监督学习和无监督学习(supervised-unsupervised learning)的应用场景,训练和测试数据的用法,学习效果评估方式。最后,对scikit-learn进行一些简单的介绍。 自计算机问世以来,计算机可以学习和模仿人类智慧的观点,可谓“引无数英雄竞折腰”。像Arthur C. Clarke的HAL(Heuristically programmed ALgorithmi
小莹莹
2018/04/23
1.8K0
【机器学习】机器学习系列:(一)机器学习基础
比监督学习做的更好:半监督学习
监督学习是人工智能领域的第一种学习类型。从它的概念开始,无数的算法,从简单的逻辑回归到大规模的神经网络,都已经被研究用来提高精确度和预测能力。
石晓文
2020/12/08
1.3K0
比监督学习做的更好:半监督学习
1.0初识机器学习
1.欢迎参加《机器学习》   当我们使用谷歌或者必应搜索网页的时候,当我们搜索相册中老友的照片的时候,当我们的电子邮箱收到许多邮件,而垃圾邮件被自动的过滤的时候,都有机器学习在起作用。   但最值得我们兴奋的是,我们可以梦想有一天,我们可以通过机器学习制造出像我们一样智能的AI,虽然这个目标距离我们还很远,但是已经有许多人,在通过机器学习,采用学习算法尝试模拟人类大脑的学习方式。   本套课程就是里介绍这些算法。通过本套课程,你将学习到最先进的机器学习算法。但仅知道算法及其数学含义,却不知道如何用来解决用它
玩蛇的胖纸
2018/07/04
5010
机器学习中的有监督学习,无监督学习,半监督学习
监督学习:通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函数,将输入映射到合适的输出,例如分类。 非监督学习:直接对输入数据集进行建模,例如聚类。
全栈程序员站长
2022/09/02
13.2K0
机器学习--机器学习的分类
在监督学习中,给定一组数据,我们知道正确的输出结果应该是什么样子,并且知道在输入和输出之间有着一个特定的关系。通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出
风骨散人Chiam
2020/10/28
6980
第一章 绪论:初识机器学习
该系列文章为,观看“吴恩达机器学习”系列视频的学习笔记。虽然每个视频都很简单,但不得不说每一句都非常的简洁扼要,浅显易懂。非常适合我这样的小白入门。
tomas家的小拨浪鼓
2019/03/04
4360
第一章 绪论:初识机器学习
半监督学习入门基础(一)
半监督学习(SSL)是一种机器学习技术,其中任务是从一个小的带标签的数据集和相对较大的未带标签的数据中学习得到的。SSL的目标是要比单独使用有标记数据训练的监督学习技术得到更好的结果。这是半监督学习系列文章的第1部分,对这个机器学习的重要子领域进行了简要的介绍。
科技新语
2022/11/02
5820
机器学习之有监督学习,无监督学习,半监督学习
机器学习是数据分析和数据挖掘的一种比较常用,比较好的手段从有无监督的角度,可以分为三类:
全栈程序员站长
2022/09/01
7550
机器学习(二):有监督学习、无监督学习和半监督学习
一、基本概念 1 特征(feature) 数据的特征。 *举例:书的内容* 2 标签(label) 数据的标签。 *举例:书属于的类别,例如“计算机”“图形学”“英文书”“教材”等。* 3 学习(learning) 将很多数据丢给计算机分析,以此来训练该计算机,培养计算机给数据分类的能力。换句话说,学习指的就是找到特征与标签的映射(mapping)关系。这样当有特征而无标签的未知数据输入时,我们就可以通过已有的关系得到未知数据标签。 *举例:把很多书交给一个学生,培养他给书本分类的能力。* 4 分类(c
海天一树
2018/04/17
1.8K0
机器学习(二):有监督学习、无监督学习和半监督学习
【机器学习笔记】有监督学习和无监督学习
概念: 从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。但从实践的意义上来说, 机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。
全栈程序员站长
2022/09/01
3.4K0
监督学习与无监督学习
机器学习如果按照训练样本标签的有无可以分为以下两种常用方法。 有监督学习(supervised learning)和无监督学习(unsupervised learning)。
里克贝斯
2021/05/21
1.1K0
监督学习和无监督学习区别
机器学习分为:监督学习,无监督学习,半监督学习(也可以用hinton所说的强化学习)等。
全栈程序员站长
2022/08/24
1.7K0
监督学习和无监督学习区别
无监督学习入门
前言 时下火热的无监督学习Yann LeCun也点赞过的无监督学习 当数据集没有任何标签时,该怎么办? 无监督学习是一组机器学习算法和方法,这些算法和方法处理这种“非基于事实”的数据。 这篇文章将
keloli
2020/04/01
6880
机器学习入门:从零开始理解监督学习与无监督学习
翻译过来就是:假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过经验E在T中任务上获得了性能改善,则我们就说关于T和P,该程序对E进行了学习。
小宇-xiaoyu
2024/12/27
3570
机器学习入门:从零开始理解监督学习与无监督学习
相关推荐
吴恩达笔记1_监督学习与非监督学习
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档