随着工业4.0时代的到来,如何借助人工智能这把利剑,实现传统生产方式的转型升级,站在新一轮工业革命浪潮的潮头,成为每个工业制造企业不得不思考的问题。工业具备大量的数据积累,工业的生产、质检、管理等各个环节都在持续、大量、快速地产生着数据,是人工智能应用的蓝海。当下,以机器视觉为代表的AI技术,正在被广泛地应用于3C电子、食品制造、汽车零部件制造等多个领域,包括缺陷瑕疵检测、生产环境安全等多项功能,AI在工业智能化转型过程中也被寄予厚望。
本期将重点聚焦工业质检,深度解析AI质检全流程实现路径。
工业质检领域的AI应用
制造业离不开质检。我们目之所及的产品,都是经过工业质检环节才顺利出厂。
各行各业对质检的需求旺盛
质检由于精细度要求高,占到工厂总人力成本的40%。举例来说,工业质检中的轴承瑕疵检测目标,可能是个小划痕,也可能是小缺口。这种情况下,瑕疵视觉感官并不直观。在整个人力检测过程中,耗时多、人力投入高。而质检效率直接影响到企业生产以及交付效率。因此,工业质检的智能化赋能已经成为节省成本,提高产能的必然趋势。
工业质检方向,经历三个过程的演变:
从上图可以看到,在深度学习阶段,可以逐步解决缺陷形态复杂、环境复杂的目标,可解决的范围更大,覆盖的场景更多。但深度学习使用门槛较高,在AI开发阶段,对原始数据的要求更高,对开发人员的要求也更高。
那么,有没有一个简单上手同时确保高效质检的方法呢?
汽车零部件AI质检痛难点
本期案例企业来自于工业轴承质检方向的解决方案提供商——韦士肯,在轴承质检方向有很深的业务场景及技术积累;但在AI算法领域,缺少足够深的技术沉淀。在智能化赋能过程中,企业遇到的缺陷检测问题,主要包括内部材质检测、尺寸/形位检测及外观缺陷检测。
缺陷类型及企业常用解决方案
该企业前期也尝试过组建算法团队做AI开发,解决检测智能化问题,但组建算法团队所需的算法人员、投入研究过程的时间成本、AI训练需要投入的服务器等机器成本累加起来,预估达到百万级。该企业的核心诉求是希望能够降低前期探索阶段的投入,利用AI赋能外观缺陷检测场景,从而提高整体质检环节的效率,以上是该企业用户的需求背景。
作为一家深耕轴承质检多年的解决方案提供商,他们在智能化转型的过程中遇到了以下主要问题:
首先,如何降低业务探索阶段的成本投入?
第二,如何对瑕疵缺陷做到精确的标注,从而提供高质量的训练数据?
第三,如何收集到各种瑕疵缺陷的数据,弥补缺陷样本少的痛点?
第四,如何适配各种硬件,简单高效完成部署工作?如何保证预测效率?
那么该企业用户是如何通过飞桨EasyDL逐一解决问题,并获得高收益的呢?
基于飞桨EasyDL打造的
成品轴承视觉检测解决方案
首先,针对汽车轴承的缺陷进行分析,从而初步确定需要应用飞桨EasyDL哪一类模型。
结合缺陷特点,选择适用的任务类型
基于缺陷分析确定使用飞桨EasyDL物体检测及图像分割模型。接下来围绕端面的缺陷检测着手数据准备→模型训练→模型部署。
数据准备
待检测的瑕疵缺陷过小,标注难度大,同时标注数量大,人力成本高。在飞桨EasyDL的标注界面上,提供很多放大或缩小工具们对于缺陷较小的目标物,可以按需缩放从而进行精准标注。如下图:
而面对数据量大的情况,可采用智能标注功能。少量标注后启动智能标注,可对已标注好的图片进行智能分析,进而将剩余图片进行一键标注。以该企业为例,200张图片手动标注用时3小时,剩余600张图片智能标注仅耗时1小时。
模型训练
部分瑕疵缺陷的样本量少,如何提升数据利用率?借由飞桨EasyDL的数据增强功能,可将一张图片衍生多张图片,提高数据利用率。同时,通过自动超参搜索策略,完成相对复杂场景数据训练的利用率,同时可以产出基于这个场景最优的参数组合,达到更高的模型精度。如果目标检测物过小,可以选择小目标检测算法。该企业在该场景中,选择800张缺陷图片,无代码训练出精确率达90%的可用模型。
模型部署
企业遇到的问题是整体预测时延会直接影响到质检效率。使用EasyDL提供的模型加速功能,在精度无损的情况下压缩模型体积,降低预测时延。该企业将模型压缩后部署在T4服务器上,单图片预测可在100ms内完成。
同时,飞桨EasyDL产出的模型硬件适配广泛,通过平台一键导出适配主流硬件的SDK包完成模型部署。对于企业来说,不需要再去额外做硬件工作的适配,大幅节省了工作成本。
最终,该企业打造了基于飞桨EasyDL的成品轴承视觉检测解决方案。基于飞桨EasyDL机器学习检测算法,使用工业相机对产线上的轴承进行图片拍摄,通过传感器获取轴承的几何参数绘制成图像,生产现场的服务器进行图像分类和检测,判断轴承的外观质量是否符合要求,可检测轴承的擦伤、磕碰伤、磨伤、削料、锈蚀等瑕疵。
进阶攻坚
金属零部件质检方案解析
看完上述汽车零部件质检案例,你是否也对AI质检有了更为具象的理解。
本文分享自 PaddlePaddle 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!