首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >旷视AI复杂场景的交通标志检测

旷视AI复杂场景的交通标志检测

作者头像
机器学习AI算法工程
发布2022-08-29 13:40:50
发布2022-08-29 13:40:50
8650
举报

向AI转型的程序员都关注了这个号👇👇👇

机器学习AI算法工程   公众号:datayx

交通标志本身种类众多,大小不定,并且在交通复杂的十字路口场景下,由于光照、天气等因素的影响,使其被精确检测变得更加困难。提高上述场景下交通标志检测准确度,将有助于降低十字路口交通事故发生的概率。

提供真实场景的道路图片,部分图片给出了交通标志的标注结果,所有交通标志共计 5 个类别,分别为红灯、直行标志、向左转弯标志、禁止驶入和禁止临时停车。

数据示例如下:

初赛1/177,复赛1/12

  • 全部 代码  ,方案详情 获取方式:
  • 关注微信公众号 datayx  然后回复 交通标志  即可获取。

框架

megengine

算法方案

  • 网络框架
    • atss + resnext101_32x8d
  • 训练阶段
    • mosaic增强 随机选择四张图片,对图片进行随机平移10%,尺度缩放(0.5,2.0),shear 0.1,最后将四张图片进行组合。
    • mixup增强 随机选取两张图进行叠加,我们最终选用的比例是0.5 * 原图+0.5 * 新图片,同时其进行缩放(0.5,2.0)。 下图为mosaic+mixup示例图:
    • 图片尺寸 最终提交版本输入图片尺寸为(1500,2100)
    • 多尺度训练(最终提交版本未采用) 起初我们将短边设为(1024, 1056, 1088, 1120, 1152, 1184, 1216, 1248, 1280, 1312, 1344, 1376, 1408),随机选取短边后,长边按比例缩放,并使长边长度小于1800,从而进行多尺度训练,取得了很好的效果。不过后期的mosaic和mixup在增强时对图片进行了缩放,实则隐含了多尺度训练,且效果优于上述方法,所以我们最终去掉了多尺度训练。
    • 数据增强
    • mosaic增强 随机选择四张图片,对图片进行随机平移10%,尺度缩放(0.5,2.0),shear 0.1,最后将四张图片进行组合。
    • mixup增强 随机选取两张图进行叠加,我们最终选用的比例是0.5 * 原图+0.5 * 新图片,同时其进行缩放(0.5,2.0)。
    • 随机水平翻转 直接对图片进行翻转,会导致第三个类别“arr_l”(左转线)和右转线混淆,故我们添加了class-aware的翻转,遇到有“arr_l”类的图片则不进行翻转。
    • 基于Albumentations库的各种增强(最终提交版本未采用) 我们尝试了ShiftScaleRotate(验证集+0.5)、CLANE(验证集+1.0)、RandomBrightnessContrast等,但组合起来测试集提点欠佳,所以最后没用。
    • gridmask增强(最终提交版本未采用) 生成一个和原图相同分辨率的mask(每个grid上全为0或全为1),然后将该mask与原图相乘得到一个图像。提点欠佳,所以没采用。
    • 类别平衡采样(最终提交版本未采用) 使用类别平衡采样后,效果不是很好,这可能是因为数据集本身没有严重的类别不均衡。下面是我们统计的每个类别在图片中出现的频率。
  • 多尺度测试
    • 多尺度测试图片尺寸 最后提交版本(2100,2700),(2100,2800),(2400,3200),如果继续增加尺度,map还会继续提高。
    • topk—nms 对上述三个尺度生成的结果先进行nms,再将得到的结果框与剩下所有框进行topk—nms(保留与当前结果框iou大于0.85的topk的框,把这些框的坐标进行融合),参数设置vote_thresh=0.85, k=5。
  • 网络结构
    • 加上增强后,backbone从res50到res101再到resx101有稳定涨点。
    • 我们还在backbone部分尝试了dcn和gcnet,验证集收效甚微,最终没有采用。

代码语言:javascript
复制
机器学习算法AI大数据技术 搜索公众号添加: datanlp长按图片,识别二维码

阅读过本文的人还看了以下文章:
TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

《深度学习:基于Keras的Python实践》PDF和代码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!
《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API
FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字
同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目
特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿
蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源深度学习、机器学习、数据分析、python 搜索公众号添加: datayx  
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-08-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习AI算法工程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 框架
  • 算法方案
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档