前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >红黑树-想说爱你不容易

红黑树-想说爱你不容易

作者头像
云海谷天
发布2022-08-09 14:42:23
2740
发布2022-08-09 14:42:23
举报
文章被收录于专栏:技术一点点成长

前言:

  记得在大一懵懵懂懂的时候就接触了红黑树的算法。但由于当时内功尚浅,无法将其内化,只是觉得它很神奇,是个好算法,设计它的人很牛!现今重拾起这个算法,不得不再次被它的精妙所折服!编写本文,是希望以鄙人的理解将红黑树算法的精髓向博客园的园友陈述一番,也希望对其有独特见解的朋友能不吝赐教。准备好了的话,我们就开始吧~

--------------------------------------------

Part I:BST

  作为开始,我们得先谈谈二叉树(Binary Search Tree)。

1.假设存在一个如下简单的键值字符表:

Key Value

A 2

C 1

B 6

B 11

H 1

J 3

  要求你按照读入顺序建立这样一棵二叉查找树,建好之后要求能够进行对于的查询操作。

源于二分查找的思想,二叉查找树有这样一个特点:

  对于树上的任意一个结点,如果它有左右子结点的话,其结点大小必定大于其左子结点且小于其右子结点。

2.查找get(key)

由于单独建立一个二叉查找树起初不好分析,我们就假设现在有一棵已经构造好二叉查找树。我们仅需要思考如何在其上面进行查找操作。

根据二分查找的思想,我们可以按照下面步骤进行查找:

Step1:将需要查找的key与二叉查找树的当前根节点的key作比较,得到比较结果后进行下面的step2;

Step2:若查找的key比根节点的key小,则递归从根节点的左子树进行同样的查找key操作;若比根节点的key大,则递归地从根节点的右子树进行同样的查找key操作;

若,查找的key刚好等于当前根节点的key,则返回当前key对应的value,结束!

3.插入put(key,value)

假设现在已经有了一个二叉查找树,我们要插入一对键值(key-value)。源于查找过程的经验,我们知道插入操作其实近似于查找操作。因为,我们插入的时候同样是拿key跟当前根节点的key比较,之后再确定是往左走还是右走,或者是更新当前值(key=root.key时)。

Code:

代码语言:javascript
复制
 1 package com.gdufe.binarysearchtree;
 2 
 3 import java.io.File;
 4 import java.util.Scanner;
 5 
 6 public class BST<Key extends Comparable<Key>, Value> {
 7 
 8     Node root; // 维护根节点
 9 
10     class Node { // 二叉树的结点
11         Key key;
12         Value value;
13         Node left, right;
14 
15         public Node(Key key, Value value) { // 初始化结点
16             this.key = key;
17             this.value = value;
18         }
19     }
20 
21     public Value get(Key key) {
22         return get(root, key);
23     }
24 
25     //查找操作
26     public Value get(Node x, Key key) {
27         if (x == null)
28             return null;
29         int cmp = key.compareTo(x.key);
30         if (cmp < 0)
31             return get(x.left, key);
32         else if (cmp > 0)
33             return get(x.right, key);
34         else
35             return x.value;
36     }
37 
38     public void put(Key key, Value value) {
39         root = put(root, key, value);
40     }
41     //插入操作
42     public Node put(Node x, Key key, Value value) {
43         if (x == null)
44             return new Node(key, value);
45         int cmp = key.compareTo(x.key);
46         if (cmp < 0)
47             x.left = put(x.left, key, value);
48         else if (cmp > 0)
49             x.right = put(x.right, key, value);
50         else
51             x.value = value;
52         return x;
53     }
54 
55     public static void main(String[] args) throws Exception {
56         Scanner input = new Scanner(new File("data_BST.txt"));
57         BST<String, Integer> bst = new BST<String, Integer>();
58         while (input.hasNext()) {
59             String key = input.next();
60             int value = input.nextInt();
61             bst.put(key, value);
62         }
63         System.out.println(bst.get("H"));
64         System.out.println(bst.get("B"));
65     }
66 
67 }

输出结果:

代码语言:javascript
复制
1
11

分析:

  插入或查找时,有可能最坏情况树不断恶意生长(垂直生长),此时的时间复杂度为:O(N),平均的时间复杂度为:O(lgN)

----------------------------------------

Part II:RedBlackBST

1. 2-3树

在二叉树的基础之上,我们引入了平衡2-3树。简单地说,二叉树每个结点至多只能有2个子结点(称为“2结点”),而现在我们可以通过将2个结点“绑”在一起形成一个有3个子结点的“3结点”。见下图:

由于查找操作较简单,我们重点讨论它的插入操作。同样基于上面所给的数据,见图:

 ------------------------------------------------

 2.红黑二叉查找树(简称“红黑树”)

  那么问题来了,我们该如何实现这样一棵2-3树呢?正常的思维当然是希望在原先的Node结构中进行重构,再构造一个嵌套的BIGNode。但巧妙的地方就在这里,我们可以以之前的二叉查找树为基础,把结点之间的链接分为“红链接”和“黑链接”。其中,红连接通过连接两个2结点组成3结点,黑连接是之前二叉查找树的普通连接。为了方便,我们不妨把3结点统一表示为一条左斜的红色链接。如图:

  上面通过定义红黑树的规则实现我们等价的2-3树结构,于是红黑树也就有了下面等价的定义。

含有红黑链接并且满足下列条件的二叉查找树:

1)红链接均为左链接

2)没有任何结点同时和2条红链接相连

3)任意空链接到根节点路径上的黑链接数相同

---------------------------------------------

既然从上面的阐述中,我们得出 了“红黑树≈2-3树",我们我们紧接着用上面的数据构建我们的红黑树,见图:

  其中,存在着3个关键操作:

左旋:当结点出现左子结点为黑,右子结点为红时,进行左旋转;

右旋:当结点出现左子结点以及左子结点的左结点均为红时,进行右旋转;

变色:当结点出现左右子结点均为红时,进行变色操作(2个子链接均变黑色,并将红链接向上传递!)

 具体,见下图:

Code:

代码语言:javascript
复制
  1 package com.gdufe.binarysearchtree;
  2 
  3 import java.io.File;
  4 import java.util.Scanner;
  5 
  6 public class RedBlackTree<Key extends Comparable<Key>, Value> {
  7 
  8     Node root; // 维护根节点
  9 
 10     final static boolean RED = true;
 11     final static boolean BLACK = false;
 12 
 13     class Node { // 二叉树的结点
 14         Key key;
 15         Value value;
 16         boolean color;
 17         Node left, right;
 18 
 19         public Node(Key key, Value value, boolean color) { // 初始化结点
 20             this.key = key;
 21             this.value = value;
 22             this.color = color;
 23         }
 24     }
 25 
 26     public Value get(Key key) {
 27         return get(root, key);
 28     }
 29 
 30     // 右旋
 31     public Node rotateRight(Node h) {
 32         Node x = h.left;
 33         h.left = x.right;
 34         x.right = h;
 35         x.color = h.color;
 36         h.color = RED;
 37         return x;
 38     }
 39 
 40     // 左旋
 41     public Node rotateLeft(Node h) {
 42         Node x = h.right;
 43         h.right = x.left;
 44         x.left = h;
 45         x.color = h.color;
 46         h.color = RED;
 47         return x;
 48     }
 49 
 50     // 变色处理
 51     public void flipColors(Node h) {
 52         h.left.color = BLACK;
 53         h.right.color = BLACK;
 54         h.color = RED;
 55     }
 56     public boolean isRed(Node x){
 57         if(x==null) return false;
 58         else return x.color;
 59     }
 60     public Value get(Node x, Key key) {
 61         if (x == null)
 62             return null;
 63         int cmp = key.compareTo(x.key);
 64         if (cmp < 0)
 65             return get(x.left, key);
 66         else if (cmp > 0)
 67             return get(x.right, key);
 68         else
 69             return x.value;
 70     }
 71 
 72     public void put(Key key, Value value) {
 73         root = put(root, key, value);
 74         root.color = BLACK;
 75     }
 76 
 77     public Node put(Node x, Key key, Value value) {
 78         if (x == null)
 79             return new Node(key, value, RED); // 添加的结点链接为红色
 80         int cmp = key.compareTo(x.key);
 81         if (cmp < 0)
 82             x.left = put(x.left, key, value);
 83         else if (cmp > 0)
 84             x.right = put(x.right, key, value);
 85         else {
 86             x.value = value;
 87         }
 88         // 判断是否需要左旋,右旋,变色操作
 89         if (x != null) {
 90             if (!isRed(x.left) && isRed(x.right))
 91                 x = rotateLeft(x); 
 92             if (isRed(x.left) && isRed(x.left.left))
 93                 x = rotateRight(x);
 94             if (isRed(x.left ) && isRed(x.right))
 95                 flipColors(x);
 96         }
 97 
 98         return x;
 99     }
100 
101     public static void main(String[] args) throws Exception {
102         Scanner input = new Scanner(new File("data_BST.txt"));
103         RedBlackTree<String, Integer> bst = new RedBlackTree<String, Integer>();
104         while (input.hasNext()) {
105             String key = input.next();
106             int value = input.nextInt();
107             bst.put(key, value);
108         }
109         System.out.println(bst.get("H"));
110         System.out.println(bst.get("B"));
111     }
112 
113 }

输出结果:

代码语言:javascript
复制
1
11

分析:

  有了上面3个关键操作之后,我们保证了树的平衡性,即树不会再恶意生长。插入N个结点后,树的高度为:O(lgN)~O(2*lgN) (思考一下?)。所以,我们得到插入和查找的整体时间复杂度均降为:O(lgN)。

--------------------------

结语:

不得不承认,红黑树算法堪称算法研究领域的非凡之作。在现今的汪洋信息时代,存在着上亿的数据。但是,当我们用红黑树算法对其进行动态的增加和查找时,仅仅需要几十次操作即可完事儿,怎能不让人拍案叫绝!!

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2015-08-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档