前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >golang 源码分析(28) interface 类型推断、反射

golang 源码分析(28) interface 类型推断、反射

作者头像
golangLeetcode
发布2022-08-02 16:54:34
7770
发布2022-08-02 16:54:34
举报
文章被收录于专栏:golang算法架构leetcode技术php
1.1 Go汇编

 Go语言被定义为一门系统编程语言,与C语言一样通过编译器生成可直接运行的二进制文件。这一点与Java,PHP,Python等编程语言存在很大的不同,这些语言都是运行在基于C语言开发的虚拟机上,如果想深入了解运行原理只需要看懂对应的C语言开发的虚拟机(绝大部分程序员应该都对C语言有基本的了解)。但是如果想深入学习Go语言,就需要对基本的汇编指令和语法有一定的了解(通过汇编可以了解到编译器到底做了什么工作)。  通过下面的例子简单了解如何通过汇编来了解Go语言的运行原理。编辑一个go文本call_function.go,输入如下代码:

代码语言:javascript
复制
     1  package main
     2
     3  func add(a, b int) int {
     4      return a + b
     5  }
     6
     7  func main() {
     8      a := 10
     9      b := 20
    10
    11      c := add(a,  b)
    12      _ = c
    13  }

 输入命令go build -gcflags '-l -N' call_function.go生成可执行文件,然后输入命令go tool objdump -s "main.main" call_function查看汇编代码如下:

代码语言:javascript
复制
     1  TEXT main.main(SB) /Users/didi/Source/Go/src/ppt/call_function.go
     2    call_function.go:7    0x104f380       65488b0c25a0080000  MOVQ GS:0x8a0, CX
     3    call_function.go:7    0x104f389       483b6110        CMPQ 0x10(CX), SP
     4    call_function.go:7    0x104f38d       764c            JBE 0x104f3db
     5    call_function.go:7    0x104f38f       4883ec38        SUBQ $0x38, SP
     6    call_function.go:7    0x104f393       48896c2430      MOVQ BP, 0x30(SP)
     7    call_function.go:7    0x104f398       488d6c2430      LEAQ 0x30(SP), BP
     8    call_function.go:8    0x104f39d       48c74424280a000000  MOVQ $0xa, 0x28(SP)
     9    call_function.go:9    0x104f3a6       48c744242014000000  MOVQ $0x14, 0x20(SP)
    10    call_function.go:11   0x104f3af       488b442428      MOVQ 0x28(SP), AX
    11    call_function.go:11   0x104f3b4       48890424        MOVQ AX, 0(SP)
    12    call_function.go:11   0x104f3b8       488b442420      MOVQ 0x20(SP), AX
    13    call_function.go:11   0x104f3bd       4889442408      MOVQ AX, 0x8(SP)
    14    call_function.go:11   0x104f3c2       e899ffffff      CALL main.add(SB)
    15    call_function.go:11   0x104f3c7       488b442410      MOVQ 0x10(SP), AX
    16    call_function.go:11   0x104f3cc       4889442418      MOVQ AX, 0x18(SP)
    17    call_function.go:13   0x104f3d1       488b6c2430      MOVQ 0x30(SP), BP
    18    call_function.go:13   0x104f3d6       4883c438        ADDQ $0x38, SP
    19    call_function.go:13   0x104f3da       c3          RET
    20    call_function.go:7    0x104f3db       e89083ffff      CALL runtime.morestack_noctxt(SB)
    21    call_function.go:7    0x104f3e0       eb9e            JMP main.main(SB)

 第8~9行汇编代码,分别将SP(栈寄存器)偏移0x28和0x20的地址赋值为0xa和0x14,对应Go代码的第8行和第9行中的对a,b变量赋值,也就是说a变量对应的内存地址是SP+0x28,b变量对应的内存地址是SP+0x20。  然后10~14行汇编代码表示对a,b变量进行拷贝,分别拷贝到SP+0x0和SP+0x8地址,然后调用add方法,这就是通常说到的函数调用时的“值传递”。  输入命令go tool objdump -s "main.add" call_function,可以看到如下的汇编代码:

代码语言:javascript
复制
     1  TEXT main.add(SB) /Users/didi/Source/Go/src/ppt/call_function.go
     2    call_function.go:3    0x104f360       48c744241800000000  MOVQ $0x0, 0x18(SP)
     3    call_function.go:4    0x104f369       488b442408      MOVQ 0x8(SP), AX
     4    call_function.go:4    0x104f36e       4803442410      ADDQ 0x10(SP), AX
     5    call_function.go:4    0x104f373       4889442418      MOVQ AX, 0x18(SP)
     6    call_function.go:4    0x104f378       c3          RET

 第3~5行汇编代码表示,将SP+0x8和SP+0x10地址的值相加,并复制到SP+0x18地址。  为什么在main函数中,a和b变量分别复制到了SP+0x0和SP+0x8地址,但是在add函数中,却将SP+0x8和SP+0x10地址的值进行相加呢?  这是因为在main函数中的汇编代码14行中,调用call执行时CPU会执行一次压栈操作,将函数调用完成以后需要返回的地址存在SP-0x8的地址处,并执行一次SP=SP-0x8的操作(具体操作可以百度一下)。所以在add函数里面的SP+0x8和SP+0x10地址就对应着main函数中的SP+0x0和SP+0x8地址。  具体过程如下图:

go函数调用.jpg

1.2 Go指针

 Go的库代码中大量使用了一些指针进行内存操作。但是在Go语言中指针变量是不能进行运算的,所以不能像C语言那样方便的对内存进行偏移寻址,但是Go中提供了unsafe包来对指针计算运算。  下面的例子可以说明使用方式:

代码语言:javascript
复制
     1  package main
     2
     3  import (
     4      "fmt"
     5      "unsafe"
     6  )
     7
     8  type Struct1 struct {
     9      A int64
    10      B int64
    11      C int64
    12  }
    13
    14  type Struct2 struct {
    15      A int64
    16      B int64
    17      C int64
    18  }
    19
    20  func main() {
    21      struct1 := Struct1 {
    22          A : 1,
    23          B : 2,
    24          C : 3,
    25      }
    26
    27      struct2 := new(Struct2)
    28
    29      var src uintptr = uintptr(unsafe.Pointer(&struct1))
    30      var dst uintptr = uintptr(unsafe.Pointer(struct2))
    31      for i := 0; i < 24; i++ {
    32          *(*uint8)(unsafe.Pointer(dst + uintptr(i))) = *(*uint8)(unsafe.Pointer(src + uintptr(i)))
    33      }
    34
    35      fmt.Println("struct1=%v||struct2=%v", struct1, *struct2);
    36  }

 在上面的例子将struct1对应内存的值复制到struct2对应的内存中,从例子中可以看出可以看到Go语言中

  • unsafe.Pointer类似于C中的void*,任何类型的指针都可以转换为unsafe.Pointer 类型,unsafe.Pointer 类型也可以转换为任何指针类型;
  • uintptr可以存go中的任何变量,如果想对指针进行运算,必须先把指针转换为uintptr。

2 Go的interface的实现

 在Go语言中interface是一个非常重要的概念,也是与其它语言相比存在很大特色的地方。interface也是一个Go语言中的一种类型,是一种比较特殊的类型,存在两种interface,一种是带有方法的interface,一种是不带方法的interface。Go语言中的所有变量都可以赋值给空interface变量,实现了interface中定义方法的变量可以赋值给带方法的interface变量,并且可以通过interface直接调用对应的方法,实现了其它面向对象语言的多态的概念。

2.1 内部定义

 两种不同的interface在Go语言内部被定义成如下的两种结构体(源码基于Go的1.9.2版本)

代码语言:javascript
复制
// 没有方法的interface
type eface struct {
    _type *_type
    data  unsafe.Pointer
}

// 记录着Go语言中某个数据类型的基本特征
type _type struct {
    size       uintptr
    ptrdata    uintptr
    hash       uint32
    tflag      tflag
    align      uint8
    fieldalign uint8
    kind       uint8
    alg        *typeAlg
    gcdata    *byte
    str       nameOff
    ptrToThis typeOff
}

// 有方法的interface
type iface struct {
    tab  *itab
    data unsafe.Pointer
}

type itab struct {
    inter  *interfacetype
    _type  *_type
    link   *itab
    hash   uint32
    bad    bool
    inhash bool
    unused [2]byte
    fun    [1]uintptr
}

// interface数据类型对应的type
type interfacetype struct {
    typ     _type
    pkgpath name
    mhdr    []imethod
}

 可以看到两种类型的interface在内部实现时都是定义成了一个2个字段的结构体,所以任何一个interface变量都是占用16个byte的内存空间。 在Go语言中_type这个结构体非常重要,记录着某种数据类型的一些基本特征,比如这个数据类型占用的内存大小(size字段),数据类型的名称(nameOff字段)等等。每种数据类型都存在一个与之对应的_type结构体(Go语言原生的各种数据类型,用户自定义的结构体,用户自定义的interface等等)。如果是一些比较特殊的数据类型,可能还会对_type结构体进行扩展,记录更多的信息,比如interface类型,就会存在一个interfacetype结构体,除了通用的_type外,还包含了另外两个字段pkgpath和mhdr,后文在对这两个字段的作用进行解析。除此之外还有其它类型的数据结构对应的结构体,比如structtype,chantype,slicetype,有兴趣的可以在$GOROOT/src/runtime/type.go文件中查看。

iface和eface的内存分布.jpg

2.2 赋值

 存在对没有方法的interface变量和有方法的interface变量赋值这两种不同的情况。分别详解这两种不同的赋值过程。

  • 没有方法的interface变量赋值  对没有方法的interface变量赋值时编译器做了什么工作?创建一个eface.go文件,代码如下:
代码语言:javascript
复制
     1  package main
     2
     3  type Struct1 struct {
     4      A int64
     5      B int64
     6  }
     7
     8  func main() {
     9      s := new(Struct1)
    10      var i interface{}
    11      i = a
    12
    13      _ = i
    14  }

 输入命令go build -gcflags '-l -N' eface.go,go tool objdump -s "main.main" eface,查看汇编代码。

代码语言:javascript
复制
     1  TEXT main.main(SB) /Users/didi/Source/Go/src/ppt/eface.go
     2    eface.go:8        0x104f360       4883ec38        SUBQ $0x38, SP
     3    eface.go:8        0x104f364       48896c2430      MOVQ BP, 0x30(SP)
     4    eface.go:8        0x104f369       488d6c2430      LEAQ 0x30(SP), BP
     5    eface.go:9        0x104f36e       48c7042400000000    MOVQ $0x0, 0(SP)
     6    eface.go:9        0x104f376       48c744240800000000  MOVQ $0x0, 0x8(SP)
     7    eface.go:9        0x104f37f       488d0424        LEAQ 0(SP), AX
     8    eface.go:9        0x104f383       4889442410      MOVQ AX, 0x10(SP)
     9    eface.go:10       0x104f388       48c744242000000000  MOVQ $0x0, 0x20(SP)
    10    eface.go:10       0x104f391       48c744242800000000  MOVQ $0x0, 0x28(SP)
    11    eface.go:11       0x104f39a       488b442410      MOVQ 0x10(SP), AX
    12    eface.go:11       0x104f39f       4889442418      MOVQ AX, 0x18(SP)
    13    eface.go:11       0x104f3a4       488d0dd5670000      LEAQ 0x67d5(IP), CX
    14    eface.go:11       0x104f3ab       48894c2420      MOVQ CX, 0x20(SP)
    15    eface.go:11       0x104f3b0       4889442428      MOVQ AX, 0x28(SP)
    16    eface.go:14       0x104f3b5       488b6c2430      MOVQ 0x30(SP), BP
    17    eface.go:14       0x104f3ba       4883c438        ADDQ $0x38, SP

 汇编代码第5~6行给结构体Struct1分配了空间SP+0x0和SP+0x8,第7~8行把这个结构体的地址放在存入了SP+0x10地址,这个地址就是变量s,第9~10行给interface类型的变量i分配了SP+0x20和SP+0x28,第13~14行把结构体A对应的_type的地址赋值到SP+0x20,然后把a变量赋值到了SP+0x28。这就是对没有方法的interface进行赋值的过程。赋值完以后的内存分配如下图:

没有方法的interface赋值.jpg

  • 有方法的interface变量赋值  如下一段代码在内存的分布
代码语言:javascript
复制
     1  package main
     2
     3  type I interface {
     4      Add()
     5      Del()
     6  }
     7
     8  type Struct1 struct {
     9      A int64
    10      B int64
    11  }
    12
    13  func (a *Struct1) Add() {
    14      a.A = a.A + 1
    15      a.B = a.B + 1
    16  }
    17
    18  func (a *Struct1) Del() {
    19      a.A = a.A - 1
    20      a.B = a.B - 1
    21  }
    22
    23  func main() {
    24      a := new(Struct1)
    25      var i I
    26      i = a
    27
    28      i.Add()
    29      i.Del()
    30  }

有方法的interface赋值.jpg

 这些内存地址都可以使用gdb调试时得到

代码语言:javascript
复制
(gdb) p i
$11 = {tab = 0x10a70e0 <Struct1,main.I>, data = 0xc42001a0c0}
(gdb) p a
$12 = (struct main.Struct1 *) 0xc42001a0c0
(gdb) p i.tab
$13 = (runtime.itab *) 0x10a70e0 <Struct1,main.I>
(gdb) p i.tab.inter
$14 = (runtime.interfacetype *) 0x105dc60 <type.*+59232>
(gdb) p i.tab._type
$15 = (runtime._type *) 0x105d200 <type.*+56576>

 通过对内存地址的打印,可以很清晰的看出在对有方法的interface变量进行赋值时的内存分布。Struct1类型和interface I类型都存在内存记录着各自的_type结构体信息,在将Struct1类型的变量赋值给interface I类型时,会有一个itab类型的结构体将Struct1类型和interface I类型关联起来。 上面的例子都是将一个指针赋值给interface变量,如果是将一个值赋值给interface变量。会先对分配一块空间保存该值的副本,然后将该interface变量的data字段指向这个新分配的空间。将一个值赋值给interface变量时,操作的都是该值的一个副本。

2.3 方法的调用

 上面对有方法的interface进行赋值后,是如何实现通过接口变量实现了函数调用呢?参考下面的汇编代码

代码语言:javascript
复制
     1  TEXT main.main(SB) /Users/didi/Source/Go/src/ppt/iface.go
     2    iface.go:23       0x104f3e0       65488b0c25a0080000  MOVQ GS:0x8a0, CX
     3    iface.go:23       0x104f3e9       483b6110        CMPQ 0x10(CX), SP
     4    iface.go:23       0x104f3ed       0f8687000000        JBE 0x104f47a
     5    iface.go:23       0x104f3f3       4883ec38        SUBQ $0x38, SP
     6    iface.go:23       0x104f3f7       48896c2430      MOVQ BP, 0x30(SP)
     7    iface.go:23       0x104f3fc       488d6c2430      LEAQ 0x30(SP), BP
     8    iface.go:23       0x104f401       488d0578ff0000      LEAQ 0xff78(IP), AX
     9    iface.go:24       0x104f408       48890424        MOVQ AX, 0(SP)
    10    iface.go:24       0x104f40c       e86fcefbff      CALL runtime.newobject(SB)
    11    iface.go:24       0x104f411       488b442408      MOVQ 0x8(SP), AX
    12    iface.go:24       0x104f416       4889442410      MOVQ AX, 0x10(SP)
    13    iface.go:25       0x104f41b       48c744242000000000  MOVQ $0x0, 0x20(SP)
    14    iface.go:25       0x104f424       48c744242800000000  MOVQ $0x0, 0x28(SP)
    15    iface.go:26       0x104f42d       488b442410      MOVQ 0x10(SP), AX
    16    iface.go:26       0x104f432       4889442418      MOVQ AX, 0x18(SP)
    17    iface.go:26       0x104f437       488d0da27c0500      LEAQ 0x57ca2(IP), CX
    18    iface.go:26       0x104f43e       48894c2420      MOVQ CX, 0x20(SP)
    19    iface.go:26       0x104f443       4889442428      MOVQ AX, 0x28(SP)
    20    iface.go:28       0x104f448       488b442420      MOVQ 0x20(SP), AX
    21    iface.go:28       0x104f44d       488b4020        MOVQ 0x20(AX), AX
    22    iface.go:28       0x104f451       488b4c2428      MOVQ 0x28(SP), CX
    23    iface.go:28       0x104f456       48890c24        MOVQ CX, 0(SP)
    24    iface.go:28       0x104f45a       ffd0            CALL AX
    25    iface.go:29       0x104f45c       488b442420      MOVQ 0x20(SP), AX
    26    iface.go:29       0x104f461       488b4028        MOVQ 0x28(AX), AX
    27    iface.go:29       0x104f465       488b4c2428      MOVQ 0x28(SP), CX
    28    iface.go:29       0x104f46a       48890c24        MOVQ CX, 0(SP)
    29    iface.go:29       0x104f46e       ffd0            CALL AX
    30    iface.go:30       0x104f470       488b6c2430      MOVQ 0x30(SP), BP
    31    iface.go:30       0x104f475       4883c438        ADDQ $0x38, SP
    32    iface.go:30       0x104f479       c3          RET
    33    iface.go:23       0x104f47a       e8f182ffff      CALL runtime.morestack_noctxt(SB)
    34    iface.go:23       0x104f47f       e95cffffff      JMP main.main(SB)

 汇编代码的第17行和18行,将itab的地址加载到SP+0x20地址处,第20,21行,24行将SP+0x20的值加载到AX寄存器,然后将AX+0x20地址的值加载到AX寄存器,CALL AX就实现了add方法的调用,其中第22行和23行的作用是将interface里面data字段的地址传递给了add方法。

iface函数调用.jpg

 通过对itab结构体进行分析,可以看到偏移0x20处为fun字段,其中0x20处为add函数的入口地址,0x28处就是del函数的入口地址。

2.4 断言的实现

 在Go语言中,经常需要对一个interface变量进行断言

代码语言:javascript
复制
     1  package main
     2
     3  type Struct1 struct {
     4      A int64
     5  }
     6
     7  func main() {
     8      a := new(Struct1)
     9
    10      var i interface{}
    11      i = a
    12
    13      b, ok := i.(Struct1)
    14      if ok {
    15          _ = b
    16      }
    17  }

 生成汇编代码进行分析

代码语言:javascript
复制
     1  TEXT main.main(SB) /Users/didi/Source/Go/src/ppt/assert.go
     2    assert.go:7       0x104f360       4883ec48        SUBQ $0x48, SP
     3    assert.go:7       0x104f364       48896c2440      MOVQ BP, 0x40(SP)
     4    assert.go:7       0x104f369       488d6c2440      LEAQ 0x40(SP), BP
     5    assert.go:8       0x104f36e       48c744241000000000  MOVQ $0x0, 0x10(SP)
     6    assert.go:8       0x104f377       488d442410      LEAQ 0x10(SP), AX
     7    assert.go:8       0x104f37c       4889442420      MOVQ AX, 0x20(SP)
     8    assert.go:10      0x104f381       48c744243000000000  MOVQ $0x0, 0x30(SP)
     9    assert.go:10      0x104f38a       48c744243800000000  MOVQ $0x0, 0x38(SP)
    10    assert.go:11      0x104f393       488b442420      MOVQ 0x20(SP), AX
    11    assert.go:11      0x104f398       4889442428      MOVQ AX, 0x28(SP)
    12    assert.go:11      0x104f39d       488d0d1c680000      LEAQ 0x681c(IP), CX
    13    assert.go:11      0x104f3a4       48894c2430      MOVQ CX, 0x30(SP)
    14    assert.go:11      0x104f3a9       4889442438      MOVQ AX, 0x38(SP)
    15    assert.go:13      0x104f3ae       488b442438      MOVQ 0x38(SP), AX
    16    assert.go:13      0x104f3b3       488b4c2430      MOVQ 0x30(SP), CX
    17    assert.go:13      0x104f3b8       488d1581ed0000      LEAQ 0xed81(IP), DX
    18    assert.go:13      0x104f3bf       4839d1          CMPQ DX, CX
    19    assert.go:13      0x104f3c2       7402            JE 0x104f3c6
    20    assert.go:13      0x104f3c4       eb3f            JMP 0x104f405
    21    assert.go:13      0x104f3c6       488b00          MOVQ 0(AX), AX
    22    assert.go:13      0x104f3c9       b901000000      MOVL $0x1, CX
    23    assert.go:13      0x104f3ce       eb00            JMP 0x104f3d0

 汇编的第12行,17行,18行可以看出,将Struct1对应的_type结构体的地址赋值给interface以后。在进行断言的时候,原理就是将interface变量_type字段的与Struct1对应的_type结构地址进行对比。 在本例子中,第12行的IP寄存器对应的值是0x104f39d,0x681c(IP)对应的地址为0x1055BB9,第17行的IP寄存器对应的值是0x104f3b8,0xed81(IP)对应的地址为0x105E139,貌似并不相同。可能是对Go的汇编中对IP寄存器的理解存在偏差,找了几个小时资料都没找到原因。

3 Go的反射

 反射是一种强大的语言特性,可以“动态”的调用方法,获取结构体运行时的一些特征,很多框架的实现都离不开反射。Go的反射就是通过interface类型来实现的。

3.1 反射获取变量的信息

 Go的反射包主要存在两个重要的结构体。

代码语言:javascript
复制
     1  type Value struct {
     2      typ *rtype
     3      ptr unsafe.Pointer
     4      flag
     5  }
     6
     7  func ValueOf(i interface{}) Value {
     8  }
     9
    10  type Type interface {
    11      Align() int
    12      FieldAlign() int
    13      Method(int) Method
    14      Name() string
    15      //一堆方法
    16      //....
    17  }
    18
    19  func TypeOf(i interface{}) Type {
    20      eface := *(*emptyInterface)(unsafe.Pointer(&i))
    21      return toType(eface.typ)
    22  }
    23
    24  type emptyInterface struct {
    25      typ  *rtype
    26      word unsafe.Pointer
    27  }

 任何一个变量可以通过调用ValueOf来获取到变量的Value结构体,通过TypeOf方法来获取变量的Type接口类型。通过TypeOf方法获取到的Type接口实际上就是该变量对应的_type。  通过前面的分析,当通过TypeOf方法获取到变量的_type结构体后,很容易获取到该变量的一些基本信息,比如_type结构体中的各种字段都可以直接获取到。

3.2 反射修改变量的值
代码语言:javascript
复制
     1  package main
     2
     3  import (
     4      "reflect"
     5  )
     6
     7  func main() {
     8      var x int64 = 10
     9
    10      reflect.ValueOf(x).SetInt(20)
    11
    12      reflect.ValueOf(&x).SetInt(20)
    13
    14      reflect.ValueOf(&x).Elem().SetInt(20)
    15  }

 上面的例子中,第10行,12行都会报panic,只有第14行能修改变量的值。在使用ValueOf获取到Value结构体以后,flag字段记录着值能否进行修改,这样应该是为了避免误操作,保证api调用者明确了解到是否需要修改值。

3.3 反射修改结构体变量字段的值

 如果需要通过反射修改某结构体里面各个字段的值。

代码语言:javascript
复制
     1  package main
     2
     3  import (
     4      "reflect"
     5      "fmt"
     6  )
     7
     8  type Struct1 struct {
     9      A int64
    10      B int64
    11      C int64
    12  }
    13
    14  func main() {
    15      P := new(Struct1)
    16
    17      V := reflect.ValueOf(P).Elem()
    18      V.FieldByName("A").SetInt(100)
    19      V.FieldByName("B").SetInt(200)
    20      V.FieldByName("C").SetInt(300)
    21
    22      fmt.Printf("%v", P)
    23  }

 上面的代码中,需要根据结构体字段的名称对各个字段的值进行修改,内部是如何实现的呢?

自定义struct内存分布.jpg

 每一个自定义的struct类型都存在这一个对应的structType结构体,该结构体记录了每个字段structField。通过对比structField里面的name字段,就可以获取到某个字段的type和偏移量。从而对具体的值进行修改。

3.4 反射动态调用方法

 动态的调用方法是怎么实现的?

代码语言:javascript
复制
     1  package main
     2
     3  import (
     4      "reflect"
     5  )
     6
     7  type Struct1 struct {
     8      A int64
     9      B int64
    10      C int64
    11  }
    12
    13  func (p *Struct1) Set() {
    14      p.A = 200
    15  }
    16
    17  func main() {
    18      P := new(Struct1)
    19      P.A = 100
    20      P.B = 200
    21      P.C = 300
    22
    23      V := reflect.ValueOf(P)
    24
    25      params := make([]reflect.Value, 0)
    26      V.MethodByName("Set").Call(params)
    27  }

 结构体的方法在内存中存在如下的分布

反射获取方法.jpg

 在编译过程中,结构体对应方法的相关信息都已经存在于内存中,分配了一块uncommonType的结构体跟在fields字段后面。根据内存的分布,如果需要根据一个结构体的名称获取到方法并且执行,只需要根据uncommonType结构中的moff字段去获取方法相关信息的地址块,然后逐个对比名称是否为想要获取的方法进行调用。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-09-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 golang算法架构leetcode技术php 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.1 Go汇编
  • 1.2 Go指针
  • 2 Go的interface的实现
    • 2.1 内部定义
      • 2.2 赋值
        • 2.3 方法的调用
          • 2.4 断言的实现
          • 3 Go的反射
            • 3.1 反射获取变量的信息
              • 3.2 反射修改变量的值
                • 3.3 反射修改结构体变量字段的值
                  • 3.4 反射动态调用方法
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档