前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >为什么机器学习中常常假设数据是独立同分布的?

为什么机器学习中常常假设数据是独立同分布的?

作者头像
全栈程序员站长
发布2022-07-09 12:26:16
发布2022-07-09 12:26:16
9550
举报

独立、相关的关系:

独立,两个事件的发生没有任何关系

相关,一般指线性相关,不相关指不线性相关,但或许满足非线性相关

同分布:

意味着X1和X2具有相同的分布形状和相同的分布参数,对离散随机变量具有相同的分布律,对连续随机变量具有相同的概率密度函数,有着相同的分布函数,相同的期望、方差。

独立同分布(iid)

在不少问题中要求样本(数据)采样自同一个分布是因为希望用训练数据集训练得到的模型可以合理用于测试集,使用同分布假设能够使得这个做法解释得通。

(机器学习就是利用当前获取到的信息(或数据)进行训练学习,用以对未来的数据进行预测、模拟。因此需要我们使用的历史数据具有总体的代表性。)

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/119465.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021年11月,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档