首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【ICML2022】深入探讨置换敏感图神经网络

【ICML2022】深入探讨置换敏感图神经网络

作者头像
数据派THU
发布2022-06-07 11:41:10
发布2022-06-07 11:41:10
23300
代码可运行
举报
文章被收录于专栏:数据派THU数据派THU
运行总次数:0
代码可运行
代码语言:javascript
代码运行次数:0
运行
复制
来源:专知本文为论文,建议阅读5分钟在这项工作中,我们通过排列组设计了一种高效的排列敏感聚合机制,捕获相邻节点之间的成对关联。

邻接矩阵排列的不变性,即图同构,是图神经网络(GNNs)的首要要求。通常,聚合消息时,节点排列上的不变操作可以满足这个前提条件。但是,这种不变性可能会忽略相邻节点之间的关系,从而影响GNN的表达能力。在这项工作中,我们通过排列组设计了一种高效的排列敏感聚合机制,捕获相邻节点之间的成对关联。我们证明了我们的方法严格地比二维Weisfeiler-Lehman (2-WL)图同构检验更强大,且不低于3-WL检验。此外,我们证明了我们的方法实现了线性抽样复杂度。在多个合成数据集和真实数据集上的综合实验证明了我们的模型的优越性。

https://www.zhuanzhi.ai/paper/da818de2d710f7cb9087582587f6240f

代码语言:javascript
代码运行次数:0
运行
复制
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-06-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据派THU 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档