前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >保姆教程 | YOLOv5在建筑工地中安全帽佩戴检测的应用

保姆教程 | YOLOv5在建筑工地中安全帽佩戴检测的应用

作者头像
Color Space
发布2022-05-26 14:36:33
1.1K0
发布2022-05-26 14:36:33
举报
文章被收录于专栏:OpenCV与AI深度学习

视觉/图像重磅干货,第一时间送达!

教程来自:https://github.com/PeterH0323/Smart_Construction

编辑:AI深度前沿视线

一、YOLO v5训练自己数据集教程

  • 1.1 创建自己的数据集配置文件
  • 1.2 创建每个图片对应的标签文件
  • 1.3 文件放置规范
  • 1.4 聚类得出先验框(可选)
  • 1.5 选择一个你需要的模型
  • 1.6 开始训练
  • 1.7 看训练之后的结果

二、侦测

三、检测危险区域内是否有人

  • 3.1 危险区域标注方式
  • 3.2 执行侦测
  • 3.3 效果:在危险区域里面的人体会被 红色框 选出来

四、生成 ONNX

五、增加数据集的分类

该项目是使用 YOLOv5 v2.x 来训练在智能工地安全领域中头盔目标检测的应用,先来一波演示!

指标

yolov5s 为基础训练,epoch = 50

分类

P

R

mAP0.5

总体

0.884

0.899

0.888

人体

0.846

0.893

0.877

0.889

0.883

0.871

安全帽

0.917

0.921

0.917

对应的权重文件:https://pan.baidu.com/share/init?surl=ELPhtW-Q4G8UqEr4YrV_5A,提取码: b981


yolov5m 为基础训练,epoch = 100

分类

P

R

mAP0.5

总体

0.886

0.915

0.901

人体

0.844

0.906

0.887

0.9

0.911

0.9

安全帽

0.913

0.929

0.916

对应的权重文件:https://pan.baidu.com/share/init?surl=0hlKrgpxVsw4d_vHnPHwEA,提取码: psst


yolov5l 为基础训练,epoch = 100

分类

P

R

mAP0.5

总体

0.892

0.919

0.906

人体

0.856

0.914

0.897

0.893

0.913

0.901

安全帽

0.927

0.929

0.919

对应的权重文件:https://pan.baidu.com/share/init?surl=iMZkRNXY1fowpQCcapFDqw,提取码: a66e


1

YOLOv5训练自己数据集教程

使用的数据集:Safety-Helmet-Wearing-Dataset ,感谢这位大神的开源数据集!

https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset

本文结合 YOLOv5官方教程 来写

环境准备

首先确保自己的环境:

代码语言:javascript
复制
Python >= 3.7
Pytorch == 1.5.x

训练自己的数据

提示:

关于增加数据集分类的方法,请看【5. 增加数据集的分类】

1.1 创建自己的数据集配置文件

因为我这里只是判断 【人没有带安全帽】、【人有带安全帽】、【人体】 3个类别 ,基于 data/coco128.yaml 文件,创建自己的数据集配置文件 custom_data.yaml

代码语言:javascript
复制
# 训练集和验证集的 labels 和 image 文件的位置
train: ./score/images/train
val: ./score/images/val

# number of classes
nc: 3

# class names
names: ['person', 'head', 'helmet']

1.2 创建每个图片对应的标签文件

使用标注工具类似于 Labelbox 、CVAT 、精灵标注助手 标注之后,需要生成每个图片对应的 .txt 文件,其规范如下:

  • 每一行都是一个目标
  • 类别序号是零索引开始的(从0开始)
  • 每一行的坐标 class x_center y_center width height 格式
  • 框坐标必须采用归一化的 xywh格式(从0到1)。如果您的框以像素为单位,则将x_centerwidth除以图像宽度,将y_centerheight除以图像高度。代码如下:
代码语言:javascript
复制
import numpy as np
def convert(size, box):
    """
    将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
    :param size: 图片的尺寸:[w,h]
    :param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
    :return: 转换后的 [x,y,w,h]
    """
    x1 = int(box[0])
    y1 = int(box[1])
    x2 = int(box[2])
    y2 = int(box[3])
    dw = np.float32(1. / int(size[0]))
    dh = np.float32(1. / int(size[1]))
    w = x2 - x1
    h = y2 - y1
    x = x1 + (w / 2)
    y = y1 + (h / 2)
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return [x, y, w, h]

生成的 .txt 文件放置的名字是图片的名字,放置在 label 文件夹中,例如:

代码语言:javascript
复制
./score/images/train/00001.jpg  # image
./score/labels/train/00001.txt  # label

生成的 .txt 例子

代码语言:javascript
复制
1 0.1830000086920336 0.1396396430209279 0.13400000636465847 0.15915916301310062
1 0.5240000248886645 0.29129129834473133 0.0800000037997961 0.16816817224025726
1 0.6060000287834555 0.29579580295830965 0.08400000398978591 0.1771771814674139
1 0.6760000321082771 0.25375375989824533 0.10000000474974513 0.21321321837604046
0 0.39300001866649836 0.2552552614361048 0.17800000845454633 0.2822822891175747
0 0.7200000341981649 0.5570570705458522 0.25200001196935773 0.4294294398277998
0 0.7720000366680324 0.2567567629739642 0.1520000072196126 0.23123123683035374

1.3 文件放置规范

文件树如下

1.4 聚类得出先验框(Yolov5 内部已做适配,可选)

使用代码 ./data/gen_anchors/clauculate_anchors.py ,修改数据集的路径

代码语言:javascript
复制
FILE_ROOT = r"xxx" # 根路径
ANNOTATION_ROOT = r"xxx"  # 数据集标签文件夹路径
ANNOTATION_PATH = FILE_ROOT + ANNOTATION_ROOT

跑完会生成一个文件 anchors.txt,里面有得出的建议先验框:

代码语言:javascript
复制
Best Accuracy = 79.72%
Best Anchors = [[14.74, 27.64], [23.48, 46.04], [28.88, 130.0], [39.33, 148.07], [52.62, 186.18], [62.33, 279.11], [85.19, 237.87], [88.0, 360.89], [145.33, 514.67]]

1.5 选择一个您需要的模型

在文件夹 ./models 下选择一个你需要的模型然后复制一份出来,将文件开头的 nc = 修改为数据集的分类数,下面是借鉴 ./models/yolov5s.yaml来修改的

代码语言:javascript
复制
# parameters
nc: 3  # number of classes     <============ 修改这里为数据集的分类数
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# anchors
anchors: # <============ 根据 ./data/gen_anchors/anchors.txt 中的 Best Anchors 修改,需要取整(可选)
  - [14,27, 23,46, 28,130] 
  - [39,148, 52,186, 62.,279] 
  - [85,237, 88,360, 145,514]

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, BottleneckCSP, [1024, False]],  # 9
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, BottleneckCSP, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, BottleneckCSP, [256, False]],  # 17

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, BottleneckCSP, [512, False]],  # 20

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, BottleneckCSP, [1024, False]],  # 23

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

1.6 开始训练

这里选择了 yolov5s 模型进行训练,权重也是基于 yolov5s.pt 来训练

代码语言:javascript
复制
python train.py --img 640 --batch 16 --epochs 10 --data ./data/custom_data.yaml --cfg ./models/custom_yolov5.yaml --weights ./weights/yolov5s.pt

其中,yolov5s.pt 需要自行下载放在本工程的根目录即可,下载地址 官方权重

1.7 看训练之后的结果

训练之后,权重会保存在 ./runs 文件夹里面的每个 exp 文件里面的 weights/best.py ,里面还可以看到训练的效果

2

推断

侦测图片会保存在 ./inferenct/output/ 文件夹下

运行命令:

代码语言:javascript
复制
python detect.py --source   0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                            http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream

例如使用我的 s 权重检测图片,可以运行以下命令,侦测图片会保存在 ./inferenct/output/ 文件夹下

代码语言:javascript
复制
python detect.py --source 图片路径 --weights ./weights/helmet_head_person_s.pt

3

检测危险区域内是否有人

3.1 危险区域标注方式

我这里使用的是 精灵标注助手 标注,生成了对应图片的 json 文件

3.2 执行侦测

侦测图片会保存在 ./inferenct/output/ 文件夹下

运行命令:

代码语言:javascript
复制
python area_detect.py --source ./area_dangerous --weights ./weights/helmet_head_person_s.pt

3.3 效果:在危险区域里面的人体会被 红色框 选出来

4

生成 ONNX

4.1 安装 onnx

代码语言:javascript
复制
pip install onnx

4.2 执行生成

代码语言:javascript
复制
python ./models/export.py --weights ./weights/helmet_head_person_s.pt --img 640 --batch 1

onnxtorchscript 文件会生成在 ./weights 文件夹中

5

增加数据集的分类

关于增加数据集分类的方法:

SHWD 数据集里面没有 person 的类别,先将现有的自己的数据集执行脚本生成yolov5需要的标签文件.txt,之后再用yolov5x.pt 加上 yolov5x.yaml ,使用指令检测出人体

代码语言:javascript
复制
python detect.py --save-txt --source ./自己数据集的文件目录 --weights ./weights/yolov5x.pt
代码语言:javascript
复制
yolov5 会推理出所有的分类,并在 inference/output 中生成对应图片的 .txt 标签文件;

修改 ./data/gen_data/merge_data.py 中的自己数据集标签所在的路径,执行这个python脚本,会进行 person 类型的合并。

下载1:Pytoch常用函数手册

在「OpenCV与AI深度学习」公众号后台回复:Pytorch常用函数手册,即可下载全网第一份Pytorch常用函数手册,涵盖Tensors介绍、基础函数介绍、数据处理函数、优化函数、CUDA编程、多线程处理等十四章章内容。

下载2:145个OpenCV实例应用代码

—THE END—

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-05-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 OpenCV与AI深度学习 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 指标
    • yolov5s 为基础训练,epoch = 50
      • yolov5m 为基础训练,epoch = 100
        • yolov5l 为基础训练,epoch = 100
        • 环境准备
        • 训练自己的数据
          • 1.1 创建自己的数据集配置文件
            • 1.2 创建每个图片对应的标签文件
              • 1.3 文件放置规范
                • 1.4 聚类得出先验框(Yolov5 内部已做适配,可选)
                  • 1.5 选择一个您需要的模型
                    • 1.6 开始训练
                      • 1.7 看训练之后的结果
                      • 检测危险区域内是否有人
                        • 3.1 危险区域标注方式
                          • 3.2 执行侦测
                            • 3.3 效果:在危险区域里面的人体会被 红色框 选出来
                            • 生成 ONNX
                              • 4.1 安装 onnx 库
                                • 4.2 执行生成
                                • 增加数据集的分类
                                相关产品与服务
                                图像识别
                                腾讯云图像识别基于深度学习等人工智能技术,提供车辆,物体及场景等检测和识别服务, 已上线产品子功能包含车辆识别,商品识别,宠物识别,文件封识别等,更多功能接口敬请期待。
                                领券
                                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档